The XMT-SSSA values deviated from the GSSA values by 7-16% for the first four experiments, but were essentially identical for the later experiments. This indicates that enhancements in image acquisition and processing improved data accuracy. The Amax values ranged from 74 cm-1 to 101 cm-1, with a coefficient of variation (COV) of 9%. The maximum capillary interfacial area ranged from 12 cm-1 to 19 cm-1, for a COV of 10%. The COVs for both decreased to 5-6% for the latter five experiments. These results demonstrate that XMT imaging provides accurate and reproducible measurements of total and capillary interfacial areas.A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. https://www.selleckchem.com/products/zilurgisertib-fumarate.html The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary individual for every comet, and generalisations can be misleading.The confluence (sangam) of India's two major rivers, the Ganges and the Yamuna, is located in the city of Allahabad. Ritualistic dips in these river waters are revered for their believed curative power against infections, and salvation from the karmic cycles of birth and rebirth. The sacred and geographic propensities of the rivers have mythic valences in Hinduism and other religious traditions. Yet the connection of these river waters with curativeness also has a base in historical microbiology near here, the British bacteriologist Ernest Hanbury Hankin, in 1896, first described the 'bactericidal action of the waters of the Jamuna and Ganges rivers on Cholera microbes', predating the discovery of bacterial viruses (now known as bacteriophages) by at least two decades. Pursuing the record of these purificatory waters in sacred writings and folklore, and later elaboration in the work of Hankin, this paper traces an epistemology of time that connects the mythic to the post-Hankin modern scientific, asking how imaginations of the waters' antibacterial properties are articulated through idioms of faith, filth and the phage. The paper explores how the bacteriophage virus comes to be spoken about within secular and sacred epistemes of infection and riverine pollution, among contemporary historians, biologists and doctors, and in the city's museums. At the same time, it traces the phage in histories arcing from the ancient religious literature, to colonial disease control efforts, to today, where bacteriophages are being conceived as a potential response to the crisis of planetary antimicrobial resistance (AMR). Allahabad presents a 'cosmotechnics' where faith, filth and phage are inextricably intertwined, generating complex triangulations between natural ecologies, cultural practices and scientific imaginations. Cosmotechnics therefore opens up novel avenues to reimagine the phage as a protean object, one that occupies partial and multiple spaces in the historico-mytho-scientific arena of Allahabad today.Elasmobranch remains are quite common in Miocene deposits and were the subject of numerous studies since the middle of the nineteenth century. Nevertheless, the taxonomic diversity of the Marine Molasse sharks, rays and skates is still largely unknown. Here, we describe 37 taxa from the lower Miocene of the Molasse Basin 21 taxa could be identified at species level, whereas 15 taxa could only be assigned to genus and one taxon is left as order incertae sedis. The material was collected from deposits of the Auwiesholz Member of the Achen Formation (middle Burdigalian, middle Ottnangian age, ca. 17.8 Ma) exposed near Simssee, Upper Bavaria. This faunal assemblage is a mixture of shallow marine, near-coastal, pelagic and deep-water taxa. The fauna from Simssee displays different biogeographic dynamics at local and regional scales, possibly related to the intense climatic, oceanographic and tectonic events that occurred during the Eggenburgian-Ottnangian stages. The faunal relationships of the early Miocene chondrichthyan faunas from the Mediterranean Sea and Paratethys with others regions are established on the basis of qualitative (presence/absence) data. The beta diversity (Sørensen-Dice coefficient) of the Miocene Molasse elasmobranchs was used to characterize the taxonomic differentiation between localities and regions. According to our results, the fauna from Simssee shows close similarities with those from Switzerland, Austria, France and northern Germany. Faunal similarities and differences are mainly related to tectonic events and oceanographic variables (i.e. migration through seaway passages) or might represent collecting biases.We review the efforts made by the scientific community in more than seventy years to elucidate the behaviour of concentration fluctuations arising from localized atmospheric releases of dynamically passive and non-reactive scalars. Concentration fluctuations are relevant in many fields including the evaluation of toxicity, flammability, and odour nuisance. Characterizing concentration fluctuations requires not just the mean concentration but also at least the variance of the concentration in the location of interest. However, for most purposes the characterization of the concentration fluctuations requires knowledge of the concentration probability density function (PDF) in the point of interest and even the time evolution of the concentration. We firstly review the experimental works made both in the field and in the laboratory, and cover both point sources and line sources. Regarding modelling approaches, we cover analytical, semi-analytical, and numerical methods. For clarity of presentation we subdivide the models in two groups, models linked to a transport equation, which usually require a numerical resolution, and models mainly based on phenomenological aspects of dispersion, often providing analytical or semi-analytical relations.