The COVID-19 pandemic revealed during the first global wave of this infectious disease that mass diagnostic testing was necessary to more rapidly detect infection in patients and control the pandemic. https://www.selleckchem.com/products/PLX-4032.html Therefore, extra research efforts to develop reliable and more accessible techniques for disease diagnosis are of supreme importance. Here, a target-responsive assembly of gold nanoparticle-core hairpin-spherical nucleic acids (AuNP-core H-SNAs) was implemented to modify the conventional polymerase chain reaction (PCR) assay for the "naked-eye" colorimetric detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Two hairpin DNA ligands are designed based on the two highly conserved regions within N and E genes of SARS-CoV-2 RNA by positioning two short palindromic arms (stem) on either side of a recognition sequence (loop). In the presence of a sequence-specific probe (activator), hairpin DNAs anchored to the surface of AuNPs unfold and expose the palindromic ends to the DNA-directed assembly of AuNPs. The sequence of the activator probes was chosen to be identical to the TaqMan probe in a real-time reverse transcription PCR (RT-PCR) assay for specifically targeting the N and E genes of SARS-CoV-2 RNA. They may either be degraded by the 5'-exonuclease activity of DNA polymerase during PCR cycles or stay intact depending on the presence or absence of the target template in the sample, respectively. Post-addition of H-SNA solutions to the final PCR products of some preconfirmed clinical samples for COVID-19 generated naked-eye-observable red and blue colors for positive and negative cases, respectively, with similar sensitivity to that of the real-time RT-PCR method.As an important cell organelle, the mitochondrion has special viscosities, while abnormal mitochondrial viscosity is closely related to many diseases. Hydrogen peroxide (H2O2) is an active molecule related to the cell microenvironment, and its influence on mitochondrial viscosity is still not clear, so further investigation is needed. In addition, since excessive accumulation of heavy metal ions would lead to cells' dysfunction, the study of effect of excessive heavy metal ions on mitochondrial viscosity has not been reported. Herein, we designed and synthesized a mitochondrial-targeting near-infrared fluorescent probe (Mito-NV) for real-time in situ imaging and analysis of mitochondrial viscosity. Furthermore, the probe revealed that H2O2 can raise mitochondrial viscosity, while heavy metal ions reduce the viscosity. This work is of great significance for understanding the execution of mitochondrial functions and the occurrence and development of related diseases.The use of color-encoded microspheres for a bead-based assay has attracted increasing attention for high-throughput multiplexed bioassays. A fluorescent PCC 6803@ZIF-8 composite was prepared as a bead-based assay platform by a self-assembled zeolitic imidazolate framework (ZIF-8) on the surface of inactivated PCC 6803 cells. The composite fluorescence owing to the presence of pigment proteins in PCC 6803 could be gradually bleached with the prolongation of the ultraviolet light irradiation time. The composites with different fluorescence intensities were therefore obtained as encoded microspheres for the multiplexed assay. ZIF-8 provides a stable, rigid shell and a large specific surface area for composites, which prevent the composites from breakage during use and storage, simplify the protein immobilization procedure, reduce non-specific adsorption, and enhance the detection sensitivity. The encoded composites were successfully used to detect multiple DNA insertion sequences of Mycobacterium tuberculosis. The presented strategy offers an innovative color-encoding method for high-throughput multiplexed bioassays without the need of using chemically synthesized fluorescent materials.Existing single-functional agents against dental caries are inadequate in antibacterial performance or mineralization balance. This problem can be resolved through a novel strategy, namely, the construction of an antibiofouling and mineralizing dual-bioactive tooth surface by grafting a dentotropic moiety to an antimicrobial peptide. The constructed bioactive peptide can strongly adsorb onto the tooth surface and has beneficial functions in a myriad of ways. It inhibits cariogenic bacteria Streptococcus mutans adhesion, kills planktonic S. mutans, and destroys the S. mutans biofilm on the tooth surface. It also protects teeth from demineralization in acidic environments, and induces self-healing regeneration in the remineralization environment. Molecular dynamics simulations elucidate the main adsorption mechanism that the positively charged amino acid residues in the bioactive peptide bind to phosphate groups on the tooth surface, and the main mineralization mechanism that the negative charges on the outermost layer of the bioactive peptide repel acetic acid ions and attract calcium ions as nucleation sites for remineralization. This study suggests that this in-house synthesized dual-bioactive peptide is a promising functional agent to prevent dental caries, and is effective in inducing in situ self-healing remineralization for the treatment of decayed teeth.Manipulating the retention of unfrozen water in freezing contaminated soil to achieve prolonged bioremediation in cold climates remains unformulated. This freezing-induced biodegradation experiment shows how nutrient and zeolite amendments affect unfrozen water retention and hydrocarbon biodegradation in field-aged, petroleum-contaminated soils undergoing seasonal freezing. During soil freezing at a site-specific rate (4 to -10 °C and -0.2 °C/d), the effect of nutrients was predominant during early freezing (4 to -5 °C), alleviating the abrupt soil-freezing stress near the freezing-point depressions, elevating alkB1 gene-harboring populations, and enhancing hydrocarbon biodegradation. Subsequently, the effect of increased unfrozen water retention associated with added zeolite surface areas was critical in extending hydrocarbon biodegradation to the frozen phase (-5 to -10 °C). A series of soil-freezing characteristic curves with empirical α-values (soil-freezing index) were constructed for the tested soils and shown alongside representative curves for clays to sands, indicating correlations between α-values and nutrient concentrations (soil electrical conductivity), zeolite addition (surface area), and hydrocarbon biodegradation.