Copyright © 2020 the Author(s). Published by PNAS.Arachidonic acid epoxides generated by cytochrome P450 (CYP) enzymes have been linked to increased tumor growth and metastasis, largely on the basis of overexpression studies and the application of exogenous epoxides. Here we studied tumor growth and metastasis in Cyp2c44-/- mice crossed onto the polyoma middle T oncogene (PyMT) background. The resulting PyMT2c44 mice developed more primary tumors earlier than PyMT mice, with increased lymph and lung metastasis. Primary tumors from Cyp2c44-deficient mice contained higher numbers of tumor-associated macrophages, as well as more lymphatic endothelial cells than tumors from PyMT mice. While epoxide and diol levels were comparable in tumors from both genotypes, prostaglandin (PG) levels were higher in the PyMTΔ2c44 tumors. This could be accounted for by the finding that Cyp2c44 metabolized the PG precursor, PGH2 to 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), thus effectively reducing levels of effector PGs (including PGE2). Next, proteomic analyses revealed an up-regulation of WD repeating domain FYVE1 (WDFY1) in tumors from PyMTΔ2c44 mice, a phenomenon that was reproduced in Cyp2c44-deficient macrophages as well as by PGE2 Mechanistically, WDFY1 was involved in Toll-like receptor signaling, and its down-regulation in human monocytes attenuated the LPS-induced phosphorylation of IFN regulatory factor 3 and nuclear factor-κB. Taken together, our results indicate that Cyp2c44 protects against tumor growth and metastasis by preventing the synthesis of PGE2 The latter eicosanoid influenced macrophages at least in part by enhancing Toll-like receptor signaling via the up-regulation of WDFY1.The hypothesized central role of RNA in the origin of life suggests that RNA propagation predated the advent of complex protein enzymes. A critical step of RNA replication is the template-directed synthesis of a complementary strand. Two experimental approaches have been extensively explored in the pursuit of demonstrating protein-free RNA synthesis template-directed nonenzymatic RNA polymerization using intrinsically reactive monomers and ribozyme-catalyzed polymerization using more stable substrates such as biological 5'-triphosphates. Despite significant progress in both approaches in recent years, the assembly and copying of functional RNA sequences under prebiotic conditions remains a challenge. Here, we explore an alternative approach to RNA-templated RNA copying that combines ribozyme catalysis with RNA substrates activated with a prebiotically plausible leaving group, 2-aminoimidazole (2AI). We applied in vitro selection to identify ligase ribozymes that catalyze phosphodiester bond formation between a template-bound primer and a phosphor-imidazolide-activated oligomer. Sequencing revealed the progressive enrichment of 10 abundant sequences from a random sequence pool. Ligase activity was detected in all 10 RNA sequences; all required activation of the ligator with 2AI and generated a 3'-5' phosphodiester bond. We propose that ribozyme catalysis of phosphodiester bond formation using intrinsically reactive RNA substrates, such as imidazolides, could have been an evolutionary step connecting purely nonenzymatic to ribozyme-catalyzed RNA template copying during the origin of life. Copyright © 2020 the Author(s). Published by PNAS.Host manipulation by parasites is a fascinating evolutionary outcome, but adaptive scenarios that often accompany even iconic examples in this popular field of study are speculative. Kin selection has been invoked as a means of explaining the evolution of an altruistic-based, host-manipulating behavior caused by larvae of the lancet fluke Dicrocoelium dendriticum in ants. Specifically, cotransmission of larval clonemates from a snail first host to an ant second host is presumed to lead to a puppeteer parasite in the ant's brain that has clonemates in the ant abdomen. Clonal relatedness between the actor (brain fluke) and recipients (abdomen flukes) enables kin selection of the parasite's host-manipulating trait, which facilitates transmission of the recipients to the final host. However, the hypothesis that asexual reproduction in the snail leads to a high abundance of clonemates in the same ant is untested. Clonal relationships between the manipulator in the brain and the nonmanipulators in the abdomen are also untested. We provide empirical data on the lancet fluke's clonal diversity within its ant host. In stark contrast to other trematodes, which do not exhibit the same host-manipulating behavioral trait, the lancet fluke has a high abundance of clonemates. Moreover, our data support existing theory that indicates that the altruistic behavior can evolve even in the presence of multiple clones within the same ant host. Importantly, our analyses conclusively show clonemate cotransmission into ants, and, as such, we find support for kin selection to drive the evolution and maintenance of this iconic host manipulation.We introduce a model of amino acid sequence evolution that accounts for the statistical behavior of real sequences induced by epistatic interactions. We base the model dynamics on parameters derived from multiple sequence alignments analyzed by using direct coupling analysis methodology. Known statistical properties such as overdispersion, heterotachy, and gamma-distributed rate-across-sites are shown to be emergent properties of this model while being consistent with neutral evolution theory, thereby unifying observations from previously disjointed evolutionary models of sequences. https://www.selleckchem.com/products/tegatrabetan.html The relationship between site restriction and heterotachy is characterized by tracking the effective alphabet dynamics of sites. We also observe an evolutionary Stokes shift in the fitness of sequences that have undergone evolution under our simulation. By analyzing the structural information of some proteins, we corroborate that the strongest Stokes shifts derive from sites that physically interact in networks near biochemically important regions. Perspectives on the implementation of our model in the context of the molecular clock are discussed. Copyright © 2020 the Author(s). Published by PNAS.