191, p=0.001 for velocity).
In PD+FOG, the more the COP was initially positioned towards the stance foot, the slower and shorter the first step. The initial medio-lateral COP position may be a compensatory strategy to address postural instability of PD+FOG. A specific training regarding postural control prior to gait preparation and execution could improve functional mobility in PD+FOG.
In PD+FOG, the more the COP was initially positioned towards the stance foot, the slower and shorter the first step. The initial medio-lateral COP position may be a compensatory strategy to address postural instability of PD+FOG. A specific training regarding postural control prior to gait preparation and execution could improve functional mobility in PD+FOG.
Progressive supranuclear palsy (PSP) features parkinsonism characterized by early postural instability, falls and prominent eye movement abnormalities that consist of saccadic slowing, followed by gaze limitation. Nystagmus is not considered typical for PSP, being more commonly associated with multiple system atrophy.
To describe the prevalence and phenomenology of nystagmus in patients with PSP.
42 patients with probable PSP underwent detailed clinical eye movement examination. https://www.selleckchem.com/products/kaempferide.html Patients with nystagmus performed video-nystagmography. T-test, Chi-Square test and Wilcoxon signed-rank test were used to test differences in demographic data, disease duration and PSP subtype between patients with and without nystagmus, and for analysis of video-nystagmographic data.
Among 42 patients with PSP, we identified 15 patients (35,7%) with gaze-evoked nystagmus, predominantly horizontal. Clinically, 10/15 patients had symmetrical or asymmetrical gaze - evoked nystagmus (Type 1), while 5/15 patients had dissociated n of the neural integrator. Nystagmus in PSP has been a hitherto under-described feature and its presence should not deter clinicians from a diagnosis of PSP.Growth of an organism involves transformations of the state of matter from unstructured food or photosynthate into the highly organized matter in the living organism. Biological evolution involves random changes in the structure of DNA that lead to changes in the organization of the matter in an organism. Thermodynamic data show the organized biomass in living organisms has the same thermodynamic properties as a random mixture of the same elemental composition and is not in an energetically metastable, low entropy state. Therefore, the central thesis of this work is that building biological structures and organization from foodstuffs incurs no direct thermodynamic cost. The implication is that growth and evolution occur with little or no thermodynamic cost. In consequence, the fundamental difference between living biomass and lifeless organic sludge is in the information constraints that direct and govern the organization of the system. These constraints within a living organism override random processes to produce an organized distribution of biomass within the organism. Similarly, the information in DNA constrains the outcome of biological evolution across organisms within a population of a species in a predictable way that leads to convergent evolution. Although individuals and molecules act or are acted upon in a random manner, the outcome in a constrained system is predictable within an organism and across organisms. As a consequence evolution will produce similar outcomes at the macro level in similar environments. Stochastic determinism is proposed as a method that could be used to model convergent evolution.It has been a traditionally held view that winged insects stop molting after they reach adulthood. We observed a fascinating phenomenon of a post-imago molt occurring in the neotenic females of a firefly species in Taiwan over the last two years. By rearing Lamprigera minor larvae to adults, four out of the five unmated females studied were found undergoing an extra molt 8-18 days after adult eclosion. They were reproductively mature when the post-imago molt occurred, as evidenced by the eggs inside their bodies. The four females died without oviposition whereas the only normal female laid eggs. A comparison of exuviae of different stages confirmed the existence of post-imago ecdysis. The adult skin differed from the pupal one mainly in the mouthparts and leg structures. No mix of pupal and adult traits was seen in the adult skin. The females retained the same morphology after the extra molt. A close examination of the post-imago molting females revealed that their oviduct openings were all blocked by larval or pupal skin and thus unable to lay eggs. The reproductive stress may invoke an endocrine disorder and lead to an extra molt. We propose that L. minor females retain their prothoracic glands even as adults, allowing them to molt as adults under certain environmental or physiological conditions. Thus, neoteny of L. minor is reflected in both the external morphology as well as the internal physiology. The possible developmental changes associated with the evolution of neoteny are discussed.Micro-and nano-plastics (MNPs) (size less then 5 mm/ less then 100 nm) epitomize one of the emergent environmental pollutants with its existence all around the globe. Their high persistence nature and release of chemicals/additives used in synthesis of plastics materials may pose cascading impacts on living organism across the globe. Natural connectivity of all the environmental compartments (terrestrial, aquatic, and atmospheric) leads to migration/dispersion of MNPs from one compartment to others. Nevertheless, the information on dispersion of MNPs across the environmental compartments and its possible impacts on living organisms are still missing. This review first acquaints with dispersion mechanisms of MNPs in the environment, its polymeric/oligomeric and chemical constituents and then emphasized its impacts on living organism. Based on the existing knowledge about the MNPs' constituent and its potential impacts on the viability, development, lifecycle, movements, and fertility of living organism via several potential mechanisms, such as irritation, oxidative damage, digestion impairment, tissue deposition, change in gut microbial communities' dynamics, impaired fatty acid metabolism, and molecular damage are emphasized. Finally, at the end, the review provided the challenges associated with remediation of plastics pollutions and desirable strategies, policies required along with substantial gaps in MNPs research were recommended for future studies.