09/13/2024


Accumulation of unfolded protein, or other stresses, activates the classical reactive unfolded protein response (UPR). In the recently characterized anticipatory UPR, receptor-bound estrogen, progesterone and other mitogenic hormones rapidly elicit phosphorylation of phospholipase C γ (PLCγ), activating the anticipatory UPR. How estrogen and progesterone activating their receptors couples to PLCγ phosphorylation and anticipatory UPR activation was unknown. We show that the oncogene c-Src is a rate-limiting regulator whose tyrosine kinase activity links estrogen and progesterone activating their receptors to anticipatory UPR activation. Supporting Src coupling estrogen and progesterone to anticipatory UPR activation, we identified extranuclear complexes of estrogen receptor α (ERα)SrcPLCγ and progesterone receptorSrcPLCγ. Moreover, Src inhibition protected cancer cells against cell death. To probe Src's role, we used the preclinical ERα biomodulator, BHPI, which kills cancer cells by inducing lethal anticipatory UPR hyperactivation. Notably, Src inhibition blocked BHPI-mediated anticipatory UPR activation and the resulting rapid increase in intracellular calcium. After unbiased long-term selection for BHPI-resistant human breast cancer cells, 4/11 BHPI-resistant T47D clones, and nearly all MCF-7 clones, exhibited reduced levels of normally growth-stimulating Src. Notably, Src overexpression by virus transduction restored sensitivity to BHPI. Furthermore, in wild type cells, several-fold knockdown of Src, but not of ERα, strongly blocked BHPI-mediated UPR activation and subsequent HMGB1 release and necrotic cell death. Thus, Src plays a previously undescribed pivotal role in activation of the tumor-protective anticipatory UPR, thereby increasing the resilience of breast cancer cells. This is a new role for Src and the anticipatory UPR in breast cancer.Background Microtubules, the key components of the eukaryotic cytoskeleton and mitotic spindle, are one of the most sought-after targets for cancer chemotherapy, especially due to their indispensible role in mitosis. Cervical cancer is a prevalent malignancy among women of developing countries including India. In spite of the remarkable therapeutic advancement, the non-specificity of chemotherapeutic drugs adversely affect the patients' survival and well-being, thus, necessitating the quest for novel indole-based anti-microtubule agent against cervical cancer, with high degree of potency and selectivity. Methods For in vitro studies, we used MTT assay, confocal microscopy, fluorescence microscopy, flow cytometry and Western blot analysis. Study in cell free system was accomplished by spectrophotometry, fluorescence spectroscopy and TEM and computational analysis was done by AutodockTools 1.5.6. Results NMK-BH2 exhibited significant and selective anti-proliferative activity against cervical cancer HeLa cells (IC50 = 1.5 μM) over normal cells. It perturbed the cytoskeletal and spindle microtubules of HeLa cells leading to mitotic block and cell death by apoptosis and autophagy. Furthermore, NMK-BH2 targeted the tubulin-microtubule system through fast and strong binding to the αβ-tubulin heterodimers at colchicine-site. Conclusion This study identifies and characterises NMK-BH2 as a novel anti-microtubule agent and provides insights into its key anti-cancer mechanism through two different cell death pathways apoptosis and autophagy, which are mutually independent. General significance It navigates the potential of the novel bis (indolyl)-hydrazide-hydrazone, NMK-BH2, to serve as lead for development of new generation microtubule-disrupting chemotherapeutic with improved efficacy and remarkable selectivity towards better cure of cervical cancer.Purpose The high infection rate of SARS-CoV-2 necessitates the need for multiple studies identifying the molecular mechanisms that facilitate the viral entry and propagation. Currently the potential extra-respiratory transmission routes of SARS-CoV-2 remain unclear. Methods Using single-cell RNA Seq and ATAC-Seq datasets and immunohistochemical analysis, we investigated SARS-CoV-2 tropism in the embryonic, fetal and adult human ocular surface. Results The co-expression of ACE2 receptor and entry protease TMPRSS2 was detected in the human adult conjunctival, limbal and corneal epithelium, but not in the embryonic and fetal ocular surface up to 21 post conception weeks. https://www.selleckchem.com/HSP-90.html These expression patterns were corroborated by the single cell ATAC-Seq data, which revealed a permissive chromatin in ACE2 and TMPRSS2 loci in the adult conjunctival, limbal and corneal epithelium. Co-expression of ACE2 and TMPRSS2 was strongly detected in the superficial limbal, corneal and conjunctival epithelium, implicating these as target entry cells for SARS-CoV-2 in the ocular surface. Strikingly, we also identified the key pro-inflammatory signals TNF, NFKβ and IFNG as upstream regulators of the transcriptional profile of ACE2+TMPRSS2+ cells in the superficial conjunctival epithelium, suggesting that SARS-CoV-2 may utilise inflammatory driven upregulation of ACE2 and TMPRSS2 expression to enhance infection in ocular surface. Conclusions Together our data indicate that the human ocular surface epithelium provides an additional entry portal for SARS-CoV-2, which may exploit inflammatory driven upregulation of ACE2 and TMPRSS2 entry factors to enhance infection.Background Optimal postoperative pain therapy for patients undergoing minimally invasive surgery remains controversial. The aim of this meta-analysis was to compare the efficacy and safety of the novel laparoscopic-guided transversus abdominis plane block (L-TAP) to other analgesic alternatives in adults undergoing minimally invasive surgery. Study design A systematic literature search of several databases was conducted according to the PRISMA guidelines through March 9, 2020, to identify randomized controlled trials (RCTs) reporting on L-TAP. Primary outcomes were pain scores at rest and movement at 24 hours postoperatively. Secondary outcomes included postoperative pain scores at 0-4 and 48 hours, opioid consumption, hospital stay, functional recovery, patient satisfaction, and adverse events. link2 Results Nineteen RCTs with 1983 patients were included. All trials compared L-TAP with ultrasound-guided transversus abdominis plane block (US-TAP), local infiltration analgesia (LIA), or inactive control; none controlled for epidural analgesia. Methodological quality of these RCTs ranged from moderate to high. L-TAP provided comparable pain control compared with US-TAP, and better early pain control compared with LIA. Recovery parameters, 24-hour opioid consumption, and postoperative nausea and vomiting (PONV) were comparable between L-TAP and US-TAP. Meanwhile, 24-hour opioid consumption, PONV incidence, hospital stay, and patient satisfaction were in favor of L-TAP compared with LIA. None of the studies reported adverse events related to L-TAP procedure. Conclusion L-TAP is safe, and superior to LIA with respect to early pain control, opioid consumption, and patient satisfaction in adults undergoing minimally invasive surgery. Given its equivalence to US-TAP, L-TAP can be used as a safer and pragmatic alternative to epidural analgesia in this patient population.Interleukin (IL)-34 is a relatively recently discovered cytokine with pleiotropic effects on various cellular activities, including immune response. In fish, the knowledge on the function of IL-34 is limited. In the present work, we investigated the function of Japanese flounder Paralichthys olivaceus IL-34 (PoIL-34) in association with inflammation and immune defense. PoIL-34 possesses the conserved structure of IL-34 superfamily and shares 21.52% sequence identity with murine IL-34. link3 PoIL-34 expression was detected in a wide range of tissues of flounder, in particular intestine, and was regulated to a significant extent by bacterial infection in a time-dependent fashion. In vitro studies showed that recombinant PoIL-34 (rPoIL-34) bound peripheral blood leukocytes (PBLs) and promoted ROS production, acid phosphatase activity, and cellular resistance against bacterial infection. At the molecular level, rPoIL-34 enhanced the expressions of inflammatory cytokines and specific JAK and STAT genes. Similar stimulatory effects of rPoIL-34 were observed in vivo. When PoIL-34 was overexpressed in flounder, the expressions of pro- and anti-inflammatory mediators were significantly affected in a tissue-dependent manner, which correlated with an augmented ability of the fish to eliminate invading pathogens from tissues. Together, these results indicated that PoIL-34 regulated inflammatory response probably via specific JAK/STAT pathways and had a significant influence on the immune defense of flounder against bacterial infection.The Nile tilapia (Oreochromis niloticus) is one of the major food fish species produced in tropical and subtropical regions. However, this industry has been facing significant challenges from microbial infections. Understanding how hosts initiate immune responses against invading microbes is the first requirement for addressing disease outbreak prevention and disease resistance. Toll-like receptors (TLRs) are a family of evolutionarily conserved proteins that can recognize pathogen-associated molecular patterns (PAMPs). They thus play an essential role in innate immunity. TLR25 is a newly identified fish-specific member of the TLR1 subfamily. In this study, we investigate the molecular and functional characteristics of O. niloticus TLR25 (OnTLR25) via tissue expression patterns, gene expression modulation after challenge with bacteria and TLR ligands, subcellular localization in human and fish cells, and the signaling pathways TLR25 may induce. Transcriptional levels of OnTLR25 are high in immune-related organs such as the spleen and head kidney, and are increased following bacterial challenges. In addition, we show that OnTLR25 preferentially localizes to the intracellular compartment in transfected tilapia head kidney (THK) cell line. Furthermore, overexpression of the truncated form of OnTLR25 in THK cell line induced the expression of proinflammatory cytokines, such as tumor necrosis factor α, interleukin (IL)-1β, IL-8, IL-12a, and interferon-d2.13. Combined, our results suggest that TLR25 is likely to play an important role in the antimicrobial responses of the innate immune system of Nile tilapia.DNA methylation is an important epigenetic modification that regulates gene expression in many biological processes, including immune response. In this study, whole-genome bisulfite sequencing (WGBS) was carried out on healthy body wall (HB) and skin ulceration syndrome (SUS) infected body wall (SFB) to gain insights into the epigenetic regulatory mechanism in sea cucumber Apostichopus japonicus. After comparison, a total of 116,522 differentially methylated regions (DMRs) were obtained including 67,269 hyper-methylated and 49,253 hypo-methylated DMRs (p less then 0.05, FDR less then 0.001). GO enrichment analysis indicated that regulation of DNA-templated transcription (GO 0006355), where DNA methylation occurred, was the most significant term in the biology process. The integration of methylome and transcriptome analysis revealed that 10,499 DMRs were negatively correlated with 496 differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these DEGs were enriched in the phosphoinositide 3-kinase-protein kinase B (PI3K/Akt)/mammalian target of rapamycin (mTOR) signaling pathway.