11/01/2024


Indium metal-organic frameworks (In-MOFs) based on pyridylcarboxylate ligands represent a subclass of MOFs featuring diverse structures, a high stability, and various properties. This review discusses the different aspects of In-MOFs including their design, synthesis and structures as well as their typical potential applications in adsorption and separation, catalysis, and chemical sensors. Importantly, the effect of pyridine on the properties and stability of frameworks has been carefully studied. The introduction of a pyridine group not only significantly enriches clusters of In3+ ions, but also enables flexible, controllably synthesized ionic or neutral frameworks to be fabricated. Based on this, we suggest that this type of In-metal organic framework (MOF) should receive more attention in the field of MOF design.Metal organic frameworks (MOFs) have attracted considerable attention in recent years due to their use in a wide range of environmental, industrial and biomedical applications. The employment of benzophenone-4,4'-dicarboxylic acid (bphdcH2) in MOF chemistry provided access to the 3D mixed metal MOFs [CoNa2(bphdc)2(DMF)2]n (NUIG2) and [ZnK2(bphdc)2(DMF)2]n (NUIG3), and the 2D homometallic MOF [Co2(OH)(bphdcH)2(DMF)2(H2O)2]n(OH)·DMF (1·DMF). 1·DMF is based on a dinuclear SBU and consists of interpenetrating networks with an sql topology. Dc magnetic susceptibility studies were carried out in 1·DMF and revealed the presence of weak antiferomagnetic exchange interactions between the metal centres. NUIG2 and NUIG3 are structural analogues of [ZnNa2(bphdc)2(DMF)2]n (NUIG1), which has shown an exceptionally high encapsulation for ibuprophen (Ibu), NO and metal ions. Both NUIG2 and NUIG3 display high metal ion (CoII, NiII, CuII) adsorption capacity, comparable to that of NUIG1, with NUIG2 exhibiting good performance in Ibu uptake (780 mg Ibu per g NUIG2). Monte Carlo simulations were conducted in NUIG1 in order to assess its adsorption capacity for other guest molecules, and revealed that it possesses an outstanding CO2 uptake at ambient pressure, which is larger than that of the previously reported best functioning species (104 vs. 100 cm3 (stp) per cm3). Furthermore, NUIG1 exhibits high selectivity for CO2 over CH4.Barium oxynitridosilicates, Ba3Si6O12N2 and Ba3Si6O9N4, were obtained from a mixture of BaCN2 and SiO2 at 800 °C, which is several hundred degrees lower than the temperature required in solid state reactions using BaCO3, SiO2 and Si3N4. The low-temperature formation mechanism was investigated by thermogravimetry analysis in conjunction with gas chromatography and mass spectroscopy. The phase ratio between the oxynitridosilicates was controlled by tuning the reaction temperature, duration, and atmosphere. Almost single-phase Ba3Si6O12N2 was obtained by reaction at 800 °C for 15 h under a N2 atmosphere, but the product changed to Ba3Si6O9N4 after 50 h at 800 °C or by heating at 950 °C for 15 h. The photoluminescence properties of Eu-doped products obtained at 800 °C using a mixture of BaCN2  Eu and SiO2 were investigated.While assembling superparamagnetic units in a controlled manner is crucial for future applications of molecular nanomagnets, optimizing their magnetic properties while achieving directional assembly of these units still remains a formidable challenge. Herein, we demonstrate how the assembly of two dysprosium chain complexes, namely, [Dy2(L)2Cl2(CH3OH)3]n·nCH3OH (1) and [Dy(L)Cl(DMF)]n (2) (H2L = N'-(5-bromo-2-hydroxybenzylidene)pyrazine-N-oxide-carbohydrazide), can be successfully manipulated using an appropriate bridging ligand design. Both complexes contain similar dimeric units bridged by two alkoxido oxygens from an L2- ligand, but extended by its pyrazine-N-oxide group exhibiting two distinct coordination modes, namely, single and double pyrazine-N-oxide bridges, respectively. Magnetic studies reveal that both complexes display typical slow magnetic relaxation under zero direct-current field; however, the anisotropy barrier and the coercive field at 2 K for complex 2 are twice as much as that of 1. A further theoretical study indicates that switching the coordination mode from a single pyrazine-N-oxide bridge to double bridges can enhance both the magnetic anisotropy of dysprosium ions and magnetic coupling within the dimeric cores. The synergistic effect between the magnetic anisotropy of dysprosium ions and magnetic interactions among them directly contributes to the overall better performance of complex 2.Solvent-dependent magnetism in Cu-based metal-organic frameworks (MOFs) is reported. Spin-flop magnetic behaviour occurs at different dehydrated states of MOFs. The oxygens of guest and coordinated water molecules are responsible as water removal tunes the coordination geometry around the Cu centre and the electronic structure of the framework.Doping engineering is an effective modification strategy to enhance the electrochemical performance of electrode materials. In this paper, the impacts of heteroatom doping in monolayer titanium disulfide (TiS2) by substituting the S atom with the heteroatoms (B, C, N, O, F, and P) on the adsorption and diffusion capabilities of alkali metals (Li, Na, and K) have been systematically investigated using first-principles calculations to evaluate the material performance for application in alkali metal-ion batteries. The doping of most heteroatoms can promote the adsorption capability of alkali metal atoms on monolayer TiS2 as their adsorption energies decrease compared with the pristine system, particularly for p-type doping with C, N, and P. https://www.selleckchem.com/btk.html The diffusion energy barriers decrease when alkali metals approach the doping site of most heteroatom-doped TiS2, and the barriers near the doping site are extremely small (0.00-0.08 eV), whereas they slightly increase as alkali metals move away from the doping site. P doping has the lowest overall diffusion energy barrier for each metal. Thus, monolayer TiS2 with heteroatom doping, especially P doping, can be used as a potential anode material for alkali metal-ion batteries. This study can help comprehend the impacts of heteroatom doping and design high-performance electrode materials for rechargeable batteries.