suspected MH cases.
Robotic-Assisted Hysterectomies (RAH) require Trendelenburg positioning and pneumoperitoneum, which further accentuate alteration in respiratory mechanics induced by general anesthesia. The role of Recruitment Maneuver (RM) as a lung-protective strategy during intraoperative surgical settings has not been much studied. We planned this study to evaluate the effect of RM on perioperative oxygenation and postoperative spirometry using PaO
/FiO
and FEV1/FVC, respectively in patients undergoing RAH.
Sixty-six ASA I‒II female patients scheduled for elective RAH were randomized into group R (recruitment maneuver, n=33) or group C (control, n=33). Portable spirometry was done one day before surgery. Patients were induced with general anesthesia, and mechanical ventilation started with volume control mode, with Tidal Volume (TV) of 6-8 mL.kg
, Respiratory Rate (RR) of 12 min, inspiratory-expiratory ratio (I E ratio) of 12, FiO
of 0.4, and Positive End-Expiratory Pressure (PEEP) of 5 cmH
O. Patients in group R received recruitment maneuvers of 30 cmH
O every 30 minutes following tracheal intubation. The primary objectives were comparison of oxygenation and ventilation between two groups intraoperatively and portable spirometry postoperatively. Postoperative pulmonary complications, like desaturation, pulmonary edema, pneumonia, were monitored.
Patients who received RM had significantly higher PaO
(mmHg) (203.2+-24.3 vs. 167.8+-27.3, p < 0.001) at T2 (30 min after the pneumoperitoneum). However, there was no significant difference in portable spirometry between the groups in the postoperative period (FVC, 1.40 ± 0.5 L vs. 1.32 ± 0.46 L, p=0.55).
This study concluded that intraoperative recruitment did not prevent deterioration of postoperative spirometry values; however, it led to improved oxygenation intraoperatively.
This study concluded that intraoperative recruitment did not prevent deterioration of postoperative spirometry values; however, it led to improved oxygenation intraoperatively.
Three-dimensional echocardiography (3DE) makes it possible to capture the entire heart in a single data set that theoretically could be used to extract any two-dimensional (2D) views and potentially replace the standard practice of serial 2D acquisitions. The aim of this study was to test the hypothesis that the quality of 3DE-derived 2D images is sufficient to allow the visualization of the left ventricular (LV), right ventricular (RV), and left atrial (LA) endocardium, on par with images from conventional two-dimensional echocardiography (2DE), and potentially more accurate quantification of chamber size and function.
First, the investigators prospectively studied 36 patients who underwent 2DE in 14 standard views, and full-volume data sets from 3DE, from which the same views were extracted offline. The ability to visualize the LV endocardium, RV free wall, and LA endocardium was scored. LV linear dimensions, LV volumes, and LV ejection fraction (LVEF), LA volume, and RV basal dimension were measured anshorten the duration of the echocardiographic examination.
The feasibility of segmental assessment of cardiac chambers using 3DE-derived 2D views is similar to that using conventional 2DE. This approach provides similar quantitative information, including more accurate LV volumes and LVEF measurements compared with CMR, and thus promises to significantly shorten the duration of the echocardiographic examination.Poly (L-lactic acid) (PLLA)-based biocomposites have been used in tissue engineering applications because of their reasonable biocompatibility and mechanical properties. However, the imperfect bioactive and mechanical properties of the composite make it difficult to be used in the region of bone defects that require high load-bearing. Therefore, this study introduced two fabricating strategies to induce mechanically and biologically enhanced hydroxyapatite (HA)/PLLA biocomposites. By introducing an in situ plasma treatment, which was simultaneously applied during the 3D-printing process, followed by the thermal annealing process, the flexural modulus of the composite was increased by 2.1-fold compared to the normal HA/PLLA composite. Furthermore, using the combinational process, efficient coating of bioactive material [decellularized extracellular matrix (dECM) derived from porcine bones] was possible. The fabricated biocomposite scaffold was assessed for various in vitro cellular activities such as cell proliferation and osteogenic activity. Based on the mechanical and biological studies, the HA/PLLA/dECM biocomposite scaffold is one of the promising scaffolds that can be applied in bone tissue regeneration.Chitosan films containing aqueous extracts of sage and rosemary were prepared as a potential food coating material with antioxidant and antibacterial properties. The effect of adding extracts at different concentrations on the mechanical, physical, and optical properties of the films was investigated. The addition of the extracts significantly increased Young's modulus values of the films compared to the chitosan film, and a significant decrease was observed in the swelling percentage and water vapor permeability of the films. Since all the prepared films were ionically cross-linked, the increase in water solubility of the films with the addition of the extract was at a low level. The release of rosmarinic acid, which is found in significant amounts in both plants, from the films was monitored by the capillary electrophoresis. The antioxidant properties imparted to the films by the addition of plant extracts were determined by DPPH and FRAP methods. The addition of plant extracts increased the antimicrobial property of chitosan films against Staphylococcus aureus and Escherichia coli. Films containing sage and rosemary extracts showed potential for use as food coating materials.Conventional fossil fuel-based packaging materials often brings of food safety and serious environmental pollution. It is significant to develop an environmentally-friendly packaging material. In this work, a levan-chitosan (LE/CS) blend film was fabricated via the solution casting method. The films were evaluated by Fourier transform infrared spectroscopy and X-ray diffraction, indicating the formation of hydrogen bonds between chitosan and levan. The mechanical properties of LE/CS films demonstrated a mechanical strength higher than CS films, and the best tensile strength appeared at a ratio of LE/CS (11) up to 18.78 ± 0.73 MPa. The addition of levan caused a significant increase in absorption of UV light with a reduction in swelling water of the blend films from 29.13 ± 0.53 % of chitosan film to 2.07 ± 0.27 % of LE/CS (11) film. A higher contact angle and lower WVP were observed for LE/CS blend films. LE/CS blend films were then used as packaging material for fresh pork and were well maintained the qualities. The study suggested that the new blend film might have a good prospect as a food packaging material.The black liquor of bamboo pulp contains a large amount of silicon, which makes it difficult to separate industrial lignin, thus hindering its high-value utilization. Herein, this paper dedicates to exploring the high-value use of silica-containing lignin. Tetraethyl silicate (TEOS) was added to the above silicon-containing lignin for crosslinking with the lignin to prevent disintegration during carbonization and provide an additional source of silica. The carbonization is carried out at 600 °C (LT-6), 900 °C (LT-9) and 1200 °C (LT-12), and the structural evolution of SiOxCy is innovatively analyzed. The results show that LT-9 is dominated by the SiO3C structure and has a specific surface area of 269 m2 g-1. The specific capacitance of LT-9 and LT-12 as supercapacitors electrodes is 78.6 F g-1 and 74.8 F g-1 at a current density of 1 A g-1, and remains 95 % and 91.7 % after 10,000 cycles. Moreover, LT-9 has a high yield of 54 %. In this work, silicon-containing lignin is exploratively prepared as a silicon-carbide-derived material. Furthermore, the potential relationship between different SiOxCy molecular structures and electrochemical performance is evaluated, which is instructive for the high-value utilization of black liquor in bamboo pulp.Lignin is a renewable raw material with excellent adsorption, biodegradability, and non-toxicity. As a new, green nanomaterial, lignin nanoparticles (LNPs) have been explored as high-value renewable materials for applications in many fields. Herein, we provide a simple, rapid approach for the fabrication of size-controlled LNPs using a titrimetric nanoprecipitation method. The prepared LNPs were formed through a layer-by-layer self-assembly approach from inside to outside based on π-π interactions and had spherical shapes with porous surfaces and particle sizes from 272.0 to 915.4 nm. The average particle size of LNPs varied with stirring speed and decreased as the volume of deionized water increased. Compared with those of the original lignin, the chemical structural characteristics of LNPs did not change significantly. The proposed scheme for the preparation of LNPs is simple, inexpensive, and possesses the properties of both lignin and nanomaterials. The sizes of LNPs were controlled. Therefore, this is a good scheme for high-value applications of lignin.The effects of gelatinization at three selected temperatures (DSC characteristic peaks temperature TO, TP, and TC) and subsequent cold storage (CS) treatment on structural characteristics, pasting, and rheological properties of maize starch (MS) were investigated. The pasting, rheological properties of MS was changed with the increase of gelatinization temperature from TO to TC, but were not further significantly changed if the gelatinization temperature was higher than TC. Pasting and thermal properties analysis suggested that gelatinization at TC (TC treatment) significantly increased the gelatinization and pasting temperature of MS. Moreover, TC treatment decreased breakdown viscosity by 8.49 times and setback viscosity by 2.53 times. Dynamic rheological measurements revealed that the TC treatment caused the lower G' and G" of MS, and decreased the thickening coefficient by 55.17 %. These results indicated that TC treatment could enhance the thermal stability properties of MS, inhibiting the shear and short-term retrogradation, the shear-thinning behavior of MS. Interestingly, the CS treatment further inhibited the shear and short-term retrogradation and the shear-thinning behavior of MS. The leaked starch molecules aggregate to form a harder structure after gelatinization and starch molecules were further aggregated after CS treatment, these all were hypothesized to be responsible for these results.Chemical agents are effective treatment methods for anthracnose induced by pathogenic Colletotrichum gloeosporioides on Stylosanthes. https://www.selleckchem.com/products/bt-11.html However, excess consumption of chemical agents destroys the environment, synthetic biology was capable of conquering the issue. The antifungal agent is developed by enclosing a bio-synthesized peptide aptamer with layered montmorillonite via electrostatic interaction. Compared with free peptide aptamer, the nanocomposite exhibits higher antifungal activity against Colletotrichum gloeosporioides, further improving the utilization of peptide aptamer. The nanocomposite killed Colletotrichum gloeosporioides by releasing peptide aptamer after they entered the spore. Moreover, montmorillonite enhances the adhesion ability of peptide aptamer via hydrophobic interactions between nanomaterials and leaves, prolonging the extension time of nanocomposite on leaves. Consequently, 0.1 mg of nanocomposite demonstrates a comparable effect to commercial carbendazim (1 %) to prevent anthracnose on leaves of Stylosanthes induced by HK-04 at room temperature.