Classic linguistic theory ascribes language change and diversity to population migrations, conquests, and geographical isolation, with the assumption that human populations have equivalent language processing abilities. We hypothesize that spectral and temporal characteristics make some consonant manners vulnerable to differences in temporal precision associated with specific population allele frequencies. To test this hypothesis, we modelled association between RU1-1 alleles of DCDC2 and manner of articulation in 51 populations spanning five continents, and adjusting for geographical proximity, and genetic and linguistic relatedness. https://www.selleckchem.com/products/chir-124.html RU1-1 alleles, acting through increased expression of DCDC2, appear to increase auditory processing precision that enhances stop-consonant discrimination, favouring retention in some populations and loss by others. These findings enhance classical linguistic theories by adding a genetic dimension, which until recently, has not been considered to be a significant catalyst for language change.Mantidflies (Mantispidae) are an unusual and charismatic group of predatory lacewings (Neuroptera), whereby the adults represent a remarkable case of morphological and functional convergence with praying mantises (Mantodea). The evolutionary history of mantidflies remains largely unknown due to a scarcity of fossils. Here, we report the discovery of a highly diverse palaeofauna of mantidflies from the mid-Cretaceous (lowermost Cenomanian) of Myanmar. The raptorial forelegs of these mantidflies possess highly divergent morphological modifications, some of which are unknown among modern mantidflies, e.g. the presence of forked basal profemoral spines or even the complete loss of foreleg spine-like structures. A phylogenetic analysis of Mantispidae reveals a pattern of raptorial foreleg evolution across the family. The high species diversity and disparate foreleg characters might have been driven by diverse niches of predator-prey interplay in the complex tropical forest ecosystem of the mid-Cretaceous.Body size is a key functional trait that is predicted to decline under warming. Warming is known to cause size declines via phenotypic plasticity, but evolutionary responses of body size to warming are poorly understood. To test for warming-induced evolutionary responses of body size and growth rates, we used populations of mosquitofish (Gambusia affinis) recently established (less than 100 years) from a common source across a strong thermal gradient (19-33°C) created by geothermal springs. Each spring is remarkably stable in temperature and is virtually closed to gene flow from other thermal environments. Field surveys show that with increasing site temperature, body size distributions become smaller and the reproductive advantage of larger body size decreases. After common rearing to reveal recently evolved trait differences, warmer-source populations expressed slowed juvenile growth rates and increased reproductive effort at small sizes. These results are consistent with an adaptive basis of the plastic temperature-size rule, and they suggest that temperature itself can drive the evolution of countergradient variation in growth rates. The rapid evolution of reduced juvenile growth rates and greater reproduction at a small size should contribute to substantial body downsizing in populations, with implications for population dynamics and for ecosystems in a warming world.Metapopulation theory assumes a balance between local decays/extinctions and local growth/new colonisations. Here we investigate whether recent population declines across part of the UK harbour seal range represent normal metapopulation dynamics or are indicative of perturbations potentially threatening the metapopulation viability, using 20 years of population trends, location tracking data (n = 380), and UK-wide, multi-generational population genetic data (n = 269). First, we use microsatellite data to show that two genetic groups previously identified are distinct metapopulations northern and southern. Then, we characterize the northern metapopulation dynamics in two different periods, before and after the start of regional declines (pre-/peri-perturbation). We identify source-sink dynamics across the northern metapopulation, with two putative source populations apparently supporting three likely sink populations, and a recent metapopulation-wide disruption of migration coincident with the perturbation. The northern metapopulation appears to be in decay, highlighting that changes in local populations can lead to radical alterations in the overall metapopulation's persistence and dynamics.Large migrating insects, flying at high altitude, often exhibit complex behaviour. They frequently elect to fly on winds with directions quite different from the prevailing direction, and they show a degree of common orientation, both of which facilitate transport in seasonally beneficial directions. Much less is known about the migration behaviour of smaller (10-70 mg) insects. To address this issue, we used radar to examine the high-altitude flight of hoverflies (Diptera Syrphidae), a group of day-active, medium-sized insects commonly migrating over the UK. We found that autumn migrants, which must move south, did indeed show migration timings and orientation responses that would take them in this direction, despite the unfavourability of the prevailing winds. Evidently, these hoverfly migrants must have a compass (probably a time-compensated solar mechanism), and a means of sensing the wind direction (which may be determined with sufficient accuracy at ground level, before take-off). By contrast, hoverflies arriving in the UK in spring showed weaker orientation tendencies, and did not correct for wind drift away from their seasonally adaptive direction (northwards). However, the spring migrants necessarily come from the south (on warm southerly winds), so we surmise that complex orientation behaviour may not be so crucial for the spring movements.In 2019, a new type of infectious disease characterized with haemorrhage and swellings of kidneys, occurred on commercial duck farms in Shandong province, China. Our systematic investigation led to the isolation of an astrovirus, designated AstV-SDTA strain and was isolated from a diseased duckling using LMH cells. Similar clinical symptoms were reproduced by experimental infection using the AstV-SDTA strain. The complete genome sequencing characterization of AstV-SDTA was conducted using next-generation sequencing (NGS) technique on Illumina HiSeq platform, and used polymerase chain reaction method to verify the NGS results for the obtained whole sequences. Phylogenetic analysis revealed that AstV-SDTA strain belongs to a novel goose astrovirus (GoAstV) branch of avian astroviruses, and the nucleotide homology based on the complete genome sequences among AstV-SDTA and other GoAstV strains deposited in Genbank was 97.2-98.8%. Taken together, these results suggest that the cross-species transmission of novel GoAstV between domestic waterfowl is possible.