Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) can record 2D distribution of polar lipids in tissue slices at ambient condition. However, sensitivity of DESI-MSI for nonpolar lipids is restricted by low ionization efficiency and severe ion suppression. Here, a compact post-photoionization assembly combined with DESI (DESI/PI) was developed for simultaneous imaging polar and nonpolar lipids in tissue sections by switching off/on a portable krypton lamp. Compared with DESI, higher signal intensities of nonpolar compounds could be detected with DESI/PI. We describe the fabrication, optimization, implementation, and data transformation for imaging both the polar and nonpolar lipids in mouse brain tissue using an Agilent 6224 Accurate-Mass TOF mass spectrometer. More than ten nonpolar lipids including cholesterol and GalCer lipids were detected by DESI/PI in the positive ion mode, compared with that by DESI. In the negative-ion mode, ion yields of DESI/PI for lipids (HexCer, PE, and PE-P) were also increased by several folds.Detection of bacterial lipids and particularly the lipid A, the lipid anchor of the lipopolysaccharide, can be very challenging and requires a certain level of expertise. Here, this chapter describes a straightforward and simple method for the analysis of bacterial lipid A. In addition, such approach, lipid fingerprint, has the potential to be applied to other bacteria such as mycobacteria.The chemical composition of Cannabis sativa L. has been extensively studied for tens of years, but little is known about its lipidome. This chapter describes an analytical workflow for polar lipid determination in hemp. After extraction, lipids are enriched and isolated by graphitized carbon black sorbent, and the isolated lipid is analyzed by liquid chromatography (LC) coupled with high resolution mass spectrometry, leading to identification of many lipid species. We have developed a semi-automated platform using commercially available Lipostar software for lipid identification. Our approach affords the identification of 189 polar lipids in hemp extract, including sulfolipids and phospholipids. The number of the identified lipid species is by far the highest ever reported for Cannabis sativa.As biomolecules, sphingolipids represent a broad spectrum of structures ranging from simple long chain bases to complex glycosphingolipids. While several different mass spectrometry based approaches have been proven to be useful in qualitative and quantitative analysis of sphingolipids, we find that electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the multiple-reaction monitoring (MRM) mode using a triple quadrupole instrument, coupled to high-performance liquid chromatography (HPLC), is the most suitable approach for the analysis. In this chapter, we describe the method in a step-by-step manner towards the targeted analysis of sphingolipids in fungi. With optimized HPLC separation and instrument settings, this MRM approach affords detection of many sphingolipid species simultaneously with good sensitivity.This book chapter provides readers the step-by-step instruction for cell growth, lipid isolation, and lipid analysis to obtain the lipidome of Corynebacterium glutamicum (C. glutamicum) in the genus Corynebacterium, a biotechnologically important bacterium. We separate the lipid families by preparative HPLC with an analytical C-8 column, followed by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high-resolution mass measurement to define the structures of cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), α-D-mannopyranosyl-(1 → 4)-α-D-glucuronyl diacylglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), and acyl trehalose monomycolate (acyl-TMM) whose structures have been previously mis-assigned or not defined by mass spectrometric means. We also define the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in the cell wall. The similarity of the lipidome to that in the Mycobacterium genera is consistent with the notion that Corynebacterium and Mycobacterium are gram-positive bacteria belonging to the suborder Corynebacterineae.To understand the interplay of lipids between Leishmania promastigotes, amastigotes, and vertebrate host cells, a robust method for cultivating Leishmania parasites, lipid extraction, and shotgun lipidomic analysis with loop injection is described. This book chapter provides the step-by-step workflow to guide readers from sample preparation to the global lipid analysis by multiple stage mass spectrometry with high resolution and tandem quadrupole mass spectrometric approaches toward studying the metabolomic roles that lipids may play in Leishmania parasite infections.Lipids play critical roles in developmental processes, and alterations in lipid metabolism are linked to a wide range of human diseases, including neurodegeneration, cancer, metabolic diseases, and microbial infections. Drosophila melanogaster, more commonly known as the fruit fly, is a powerful organism for developmental biology and human disease research. We have previously developed a comprehensive biochemical tool, based on liquid chromatography-mass spectrometry (LC-MS), to probe the dynamics of lipid remodeling during D. melanogaster development. This chapter introduces a step-by-step protocol for extracting and analyzing lipids across all developmental stages (embryo, larvae, pupa, and adult) of D. melanogaster. The targeted semi-quantitative approach offers a comprehensive coverage of more than 400 lipid species spanning the lipid classes, glycerophospholipids, sphingolipids, triacylglycerols, and sterols.Oxylipins are an important class of bioactive lipids derived from polyunsaturated fatty acids. They can be both pro- and anti-inflammatory and function as important mediators in various pathological conditions. However, comprehensive analysis of oxylipins still remains a challenge because of their low abundance in plasma and the dominance of structurally similar isomeric species. Herein, we describe a simple and rapid method to comprehensively analyze oxylipins in blood plasma, which utilizes solid-phase extraction in 96-well format for efficient sample cleanup. Separation and detection of more than 130 oxylipins is accomplished by liquid chromatography-tandem mass spectrometry with multiple reaction monitoring in negative-ion mode. The absolute concentrations of oxylipins in human plasma are determined using the calibration curves constructed from internal standards. Detailed methods and precautions are presented for a successful adoption of this method in analytical laboratory.The precorneal tear film keeps the eye surface moist and helps to maintain normal eye function. The outermost lipid layer of the tear film, which attenuates tear film evaporation, contains meibum secreted from the meibomian gland. Most meibum lipids are neutral, including wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs), along with some polar lipids including free fatty acids (FFAs), O-acyl-ω-hydroxy fatty acids (OAHFAs), and trace phospholipids. Detection of neutral lipids by mass spectrometry (MS) is challenging due to interference from impurities, particularly when working with minute-volume meibum samples. Here, we describe procedures for sample preparation and MS analysis of these elusive meibum lipids that can be used to examine dry eye disease mechanisms. Because the method described here minimizes impurity peaks for lipids generally, neutral and otherwise, it may be applied to high-sensitivity analysis of other biological samples.Lipidomic analyses by mass spectrometry (MS) of epidermal ceramides, a large family of lipids crucial to the permeability barrier of the skin, have been reported previously. To ensure the accuracy of lipid identification, we describe here the isolation of mouse newborn epidermal lipids followed by fractionation with solid-phase extraction columns, and lipidomic analyses by high-resolution MS for structural identification. We also describe here the employment of thin layer chromatography, an old but useful tool, in facilitating the structural characterization of the epidermal lipid species by MS.Ceramides are a special class of sphingolipids and play a central role in sphingolipid metabolism, and have diverse structures. In this book chapter, tandem quadrupole mass spectrometric approaches applying multiple linked scannings including various constant neutral loss scan (NLS) and precursor ion scan (PIS), the unique applicable feature of a triple-stage quadrupole (TSQ) instrument for analysis of ceramides desorbed as [M-H]- and [M+Li]+ ions are described. These multiple dimensional tandem mass spectrometric approaches are fully adapted to the conventional shotgun lipidomics workflow with minimal or without prior chromatographic separation to profile ceramide molecules, and thus detection of a whole class of ceramide or various specific ceramide subclasses in crude lipid extract can be achieved. https://www.selleckchem.com/products/ssr128129e.html With addition of internal standard(s), semi-quantitation of ceramide in the lipid extract of biological origin is possible. Examples have shown promise in ceramide profiling of several whole lipid extracts from porcine brain, the model Dictyostelium Discoideum cells for cancer study, and skin.Fatty acids are an essential structural and energy storage component of cells and hence there is much interest in their metabolism, requiring identification and quantification with readily available instrumentation, such as GC-MS. Fatty acid methyl esters (FAMEs) can be generated and extracted directly from biological tissue, in a one-pot process, and following high resolution GC, their respective chain length, degrees of unsaturation, and other functionalities can be readily identified using EI-MS. Defining the positions of the double bonds in the alkyl chain requires conversion of the FAMEs into their respective dimethyloxazoline (DMOX) derivatives. Following EI, this derivative allows charge retention on the heterocycle, and concomitant charge remote fragmentation of the alkyl chain to yield key double bond position identifying ions. The protocols described herein have been applied to the identification and quantification of fatty acids harvested from microalgae grown to produce biofuels and to the screening of salt tolerant Arabidopsis mutants.Charge-switch derivatization to convert long-chain fatty acids (LCFAs) to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives (FA-AMPP derivative) drastically increases their sensitivity (>102) detected by electrospray ionization (ESI) or matrix assisted laser desorption ionization (MALDI). Lipidomic analyses of the FA-AMPP derivatives by ESI combined with CID tandem mass spectrometry (MS2), or by MALDI-TOF/TOF affords unambiguous structural characterization of LCFAs, including many unusual microbial LCFAs that contain various functional groups such as methyl, hydroxyl, cyclopropyl, and double bond(s). The ease of preparation of the FA-AMPP derivatives, the tremendous gain in sensitivity after derivatization, and more importantly, the readily recognizable product ion spectra that contain rich structurally informative fragment ions for locating functional groups make this method one of the most powerful techniques for LCFA identification and quantification.