09/12/2024


One of the hardest working mitotic proteins, Polo-like kinase 1 (PLK1), functions at mitotic entry, cytokinesis, and many steps in between. In this issue, Xie et al. (2020) describe a centrosome-specific interaction between PLK1 and Retinoid X Receptor-α and they test selective inhibition of this interaction as an anti-mitotic cancer therapy.Membrane-cortex attachment plays key roles in controlling cell shape and integrity. In this issue of Developmental Cell, Welf et al. describe a new function for membrane-actin tethering in controlling where and when cells initiate new protrusions.In this issue of Developmental Cell, Muncie et al. describe the generation of gastrulation-like foci of cells within micropatterned colonies of pluripotent stem cells. This demonstration of mechanosensitive β-catenin/Wnt-dependent specification of cell fate during gastrulation illustrates the insights gleaned by placing stem cells in embryo-like mechanical environments.The United Nations General Assembly calls for ecosystem restoration to be a primary intervention strategy used to counter the continued loss of natural habitats worldwide, while supporting human health and wellbeing globally. Restoration of coastal marine ecosystems is perceived by many to be expensive and prone to failure, in part explaining its low rates of implementation compared with terrestrial ecosystems. Yet, marine ecosystem restoration is a relatively new field, and we argue that assessments of its potential to answer this call should not rely on typical outcomes, but also to learn from successful outliers. Here, we review successful restoration efforts across a suite of metrics in coastal marine systems to highlight 'bright spots'. We find that, similar to terrestrial systems, restoration interventions can be effective over large spatial expanses (1,000s-100,000s ha), persist for decades, rapidly expand in size, be cost-effective, and generate social and economic benefits. These bright spots clearly demonstrate restoration of coastal marine systems can be used as a nature-based solution to improve biodiversity and support human health and wellbeing. Examining coastal marine restoration through a historical lens shows that it has developed over a shorter period than restoration in terrestrial systems, partially explaining lower efficiencies. Given these bright spots and the relative immaturity of coastal marine ecosystem restoration, it is likely to advance rapidly over the coming decades and become a common intervention strategy that can reverse marine degradation, contribute to local economies, and improve human wellbeing at a scale relevant to addressing global threats.The first three-dimensionally preserved sauropod dinosaur embryo surprises paleontologists. A member of the gigantic titanosaurs, its peculiar morphology shows how much these animals changed during growth and has implications for ecology and skull development that go beyond paleontology.A recent study reports the three-dimensional structure of a primary cilium with unprecedented clarity. The results highlight the architectural differences with motile cilia and provoke a reassessment of the relationship between the ciliary cytoskeleton and microtubule-based transport in cilia.Organ development requires coordination between gene expression patterns and cellular processes across developmental axes to generate consistent shapes. A new study shows that, in plants, this coordination may be in part mediated by precise spatial hormone synthesis, regulated by a conserved family of genes.RNA viral titers are often suppressed in insects co-infected with the bacterial endosymbiont Wolbachia. This property has been used to suppress transmission of the ragged rice stunt virus from its insect host, the brown planthopper, to the rice plant.Recognizing and remembering dangerous pathogens is of the utmost importance for an animal's survival. Nematodes use a digested bacterial small RNA molecule as a cue of pathogenicity. Inheritance of this RNA even protects the progeny from infection.A new study that regularly resets the background community to time zero shows how eco-evolutionary dynamics affect bacteria living in a diverse community.Whilst tissues form during development, some cells are extruded from epithelial monolayers. Rather than dying or differentiating, a new study shows that displaced cells can reintegrate after dividing. Surprisingly, this 'intrusion' pathway shares common features with axon guidance.The mode and tempo of human dispersal to the far-flung Pacific Islands has been a source of fascination for centuries. New ancient DNA data from the archipelago of Vanuatu shed light on the ancient migrations that shaped the history of human settlement in the Pacific.An investigation of how mitotic spindle size scales with cell size in early zebrafish embryos reveals fundamental principles of spindle organization. Spindle size depends primarily on microtubule number, which is regulated by a reaction-diffusion system when cells are large, and by signals from the plasma membrane when they are small.Studies in island systems underpin much of our knowledge of macroevolution. A new study of the Galápagos giant daisies adds to this tradition. A time-calibrated phylogeny is presented that offers insights into the factors associated with diversification, providing a framework for further studies to investigate processes underlying these findings.During a brief increase in temperature, cells undergoing spermatogenesis, but not oogenesis, activate transposons. This sexual dimorphism suggests that temperature stress during spermatogenesis provides a unique opportunity for transposons to mobilize and modify genomes, driving evolutionary change without substantially affecting reproduction.A new metagenomics study has shown that marine viruses recently acquired genes encoding light-gated ion channels from green algae. These so-called channelrhodopsin genes may allow the viruses to manipulate the swimming behavior of the algae they infect.In July 2016, a mummified carcass of an ancient wolf (Canis lupus) pup (specimen YG 648.1) was discovered in thawing permafrost in the Klondike goldfields, near Dawson City, Yukon, Canada (Figure 1A). The wolf pup mummy was recovered along a small tributary of Last Chance Creek during hydraulic thawing that exposed the permafrost sediment in which it was preserved. This mummified wolf pup is important to the local Tr'ondëk Hwëch'in people, who named it Zhùr, meaning 'wolf' in the Hän language of their community. Here, we report detailed morphometric, isotopic, and genetic analyses of Zhùr that reveal details of her appearance, evolutionary relationships to other wolves and short life-history and ecology. Zhùr is the most complete wolf mummy known. She lived approximately 57,000 years ago and died in her den during a collapse of the sediments. During her short life, she ate aquatic resources, and is related to ancient Beringian and Russian gray wolves and her clade is basal to all living gray wolves. VIDEO ABSTRACT.Intraub posits the existence of two separate processes in scene memory one in which we automatically extrapolate the visual information in a scene beyond its boundaries (scene construction), and one in which we normalize our memories to either a schema or an average (normalization). She claims that scene construction will lead to transformations exclusively in the direction of boundary extension (BE), while normalization will produce bidirectional transformations of both BE and the opposite effect of boundary contraction (BC). Thus, because we observed both BE and BC in our study [1], our paradigm must be tapping into additional cognitive processes than just scene construction. https://www.selleckchem.com/products/azd5363.html However, our paper [1] questions this premise - if BE and BC are equally common using large, representative stimulus sets in the same tasks used previously [2,3], then perhaps prior studies primarily found unidirectional BE effects due to limited stimulus sampling, and there was no privileged link between boundary extension and scene construction in memory to begin with.Bainbridge and Baker [1] argue that boundary extension (BE), false memory beyond a view, is an artifact of stimulus selection. They dismiss theoretical explanations that include scene construction [2,3], and suggest removal of BE from textbooks. Their empirical work is an admirable study of scene errors, but the bridge between their data and their sweeping conclusions about BE is not well-grounded. They claim that BE is considered 'universal' and, thus, their observation of contraction (loss of peripheral content) in addition to extension violates a fundamental premise. They claim that reliance on narrow 'recycled' stimulus sets object(s) centered on 'generic', non-scenic backgrounds created the artifact. Neither claim is correct.In this Quick guide, Nadia Sloan and Leigh Simmons introduce the diverse and fascinating biology of female genitalia.Interview with Alycia Mosley Austin, who directs graduate recruitment, professional development, and diversity initiatives at the University of Rhode Island.A critical mechanism for maximizing reward is instrumental learning. In standard instrumental learning models, action values are updated on the basis of reward prediction errors (RPEs), defined as the discrepancy between expectations and outcomes. A wealth of evidence across species and experimental techniques has established that RPEs are signaled by midbrain dopamine neurons. However, the way dopamine neurons receive information about reward outcomes remains poorly understood. Recent animal studies suggest that the pedunculopontine nucleus (PPN), a small brainstem structure considered as a locomotor center, is sensitive to reward and sends excitatory projection to dopaminergic nuclei. Here, we examined the hypothesis that the PPN could contribute to reward learning in humans. To this aim, we leveraged a clinical protocol that assessed the therapeutic impact of PPN deep-brain stimulation (DBS) in three patients with Parkinson disease. PPN local field potentials (LFPs), recorded while patients performed an instrumental learning task, showed a specific response to reward outcomes in a low-frequency (alpha-beta) band. Moreover, PPN DBS selectively improved learning from rewards but not from punishments, a pattern that is typically observed following dopaminergic treatment. Computational analyses indicated that the effect of PPN DBS on instrumental learning was best captured by an increase in subjective reward sensitivity. Taken together, these results support a causal role for PPN-mediated reward signals in human instrumental learning.The synaptotrophic hypothesis posits that synapse formation stabilizes dendritic branches, but this hypothesis has not been causally tested in vivo in the mammalian brain. The presynaptic ligand cerebellin-1 (Cbln1) and postsynaptic receptor GluD2 mediate synaptogenesis between granule cells and Purkinje cells in the molecular layer of the cerebellar cortex. Here we show that sparse but not global knockout of GluD2 causes under-elaboration of Purkinje cell dendrites in the deep molecular layer and overelaboration in the superficial molecular layer. Developmental, overexpression, structure-function, and genetic epistasis analyses indicate that these dendrite morphogenesis defects result from a deficit in Cbln1/GluD2-dependent competitive interactions. A generative model of dendrite growth based on competitive synaptogenesis largely recapitulates GluD2 sparse and global knockout phenotypes. Our results support the synaptotrophic hypothesis at initial stages of dendrite development, suggest a second mode in which cumulative synapse formation inhibits further dendrite growth, and highlight the importance of competition in dendrite morphogenesis.