In this work, low-threshold resonant lasing emission was investigated in undoped and Mg-doped GaN thin films on interfacial designed sapphire substrates. The scattering cross-section of the periodic resonant structure was evaluated by using the finite difference time domain (FDTD) method and was found to be beneficial for reducing the threshold and enhancing the resonant lasing emission within the periodic structures. Compared with undoped and Si-doped GaN thin films, p-type Mg-doped GaN thin films demonstrated a better lasing emission performance. The lasing energy level system and defect densities played vital roles in the lasing emission. This work is beneficial to the realization of multifunctional applications in optoelectronic devices.Plasma modification of polyimide (PI) substrates upon which electrical circuits are fabricated by the laser sintering of cuprous oxide nanoparticle pastes was investigated systematically in this study. Surface properties of the PI substrate were investigated by carrying out atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), and contact angle measurements. Experimental results show that surface characteristics of PI substrates, including surface energy, surface roughness, and surface binding significantly affected the mechanical reliability of the sintered copper structure. Among the plasma gases tested (air, O2, Ar-5%H2, and N2-30%H2), O2 plasma caused the roughest PI surface as well as the most C=O and C-OH surface binding resulting in an increased polar component of the surface energy. The combination of all those factors caused superior bending fatigue resistance.Silica nanoparticles were synthesized using the aqueous extract of orange peels by the green chemistry approach and simple method. The physicochemical properties such as optical and chemical banding of as-synthesized silica nanoparticles were analyzed with UV-visible spectroscopy and Fourier transform infrared spectroscopy. Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis and X-ray diffraction analysis were employed to confirm the shape, size and elemental purities of the silica nanoparticles. https://www.selleckchem.com/products/msdc-0160.html The thermal stability and mass loss of the silica nanoparticles was examined using thermogravimetric analysis and zeta potential analysis. The surface plasmon resonance band of the silica nanoparticle was obtained in the wavelength of 292 nm. Silica nanoparticles with a spherical and amorphous nature and an average size of 20 nm were produced and confirmed by X-ray diffraction and Scanning Electron Microscopy. The zeta potential of the silica nanoparticles was -25.00 mV. The strong and broad bands were located at 457, 642 and 796 cm-1 in the Fourier transform infrared spectra of the silica nanoparticles, associated with the Si-O bond. All the results of the present investigation confirmed and proved that the green synthesized silica nanoparticles were highly stable, pure and spherical in nature. In addition, the antioxidant activity of the green synthesized orange peel extract mediated by the silica nanoparticles was investigated with a DPPH assay. The antioxidant assay revealed that the synthesized silica nanoparticles had good antioxidant activity. In the future, green synthesized silica nanoparticles may be used for the production of nano-medicine.Epoxy composites with high thermal conductivity, excellent dielectric, and mechanical properties are very promising for solving epoxy cracking faults in reactors and for extending their service life. In this work, we report on epoxy composites enhanced by ternary fillers of boron nitride nanosheets (BNNSs), multiwalled carbon nanotubes (MWCNTs), and silica (SiO2) nanoparticles. The obtained BNNSs/MWCNTs/SiO2/epoxy composites exhibit a high thermal conductivity of 0.9327 W m-1 K-1, which is more than 4-fold higher than that of pure epoxy. In addition, the resultant composites present an improved mechanical strength (from 2.7% of epoxy to 3.47% of composites), low dielectric constant (4.6), and low dielectric loss (0.02). It is believed that the integration of multifunctional properties into epoxy composites provides guidance for optimizing the design of high-performance materials.High-performance and low-power field-effect transistors (FETs) are the basis of integrated circuit fields, which undoubtedly require researchers to find better film channel layer materials and improve device structure technology. MoS2 has recently shown a special two-dimensional (2D) structure and superior photoelectric performance, and it has shown new potential for next-generation electronics. However, the natural atomic layer thickness and large specific surface area of MoS2 make the contact interface and dielectric interface have a great influence on the performance of MoS2 FET. Thus, we focus on its main performance improvement strategies, including optimizing the contact behavior, regulating the conductive channel, and rationalizing the dielectric layer. On this basis, we summarize the applications of 2D MoS2 FETs in key and emerging fields, specifically involving logic, RF circuits, optoelectronic devices, biosensors, piezoelectric devices, and synaptic transistors. As a whole, we discuss the state-of-the-art, key merits, and limitations of each of these 2D MoS2-based FET systems, and prospects in the future.Herein, we present an innovative graphene oxide (GO)-induced strategy for synthesizing GO-based metal-organic-framework composites (Co-BTC@GO) for high-performance supercapacitors. 1,3,5-Benzene tricarboxylic acid (BTC) is used as an inexpensive organic ligand for the synthesis of composites. An optimal GO dosage was ascertained by the combined analysis of morphology characterization and electrochemical measurement. The 3D Co-BTC@GO composites display a microsphere morphology similar to that of Co-BTC, indicating the framework effect of Co-BTC on GO dispersion. The Co-BTC@GO composites own a stable interface between the electrolyte and electrodes, as well as a better charge transfer path than pristine GO and Co-BTC. A study was conducted to determine the synergistic effects and electrochemical behavior of GO content on Co-BTC. The highest energy storage performance was achieved for Co-BTC@GO 2 (GO dosage is 0.02 g). The maximum specific capacitance was 1144 F/g at 1 A/g, with an excellent rate capability. After 2000 cycles, Co-BTC@GO 2 maintains outstanding life stability of 88.1%. It is expected that this material will throw light on the development of supercapacitor electrodes that hold good electrochemical properties.In a sol-gel co-condensation, a mesoporous silica hybrid integrated with (3-mercaptopropyl)trimethoxysilane (TMPSH) was prepared and then reacted with allylamine via a post-surface functionalization approach. Approximately 15 mol% of TMSPSH was introduced into the mesoporous silica pore walls along with tetraethyl orthosilicate. The mercapto ligands in the prepared mesoporous silica pore walls were then reacted with allylamine (AM) to form the mercapto-amine-modified mesoporous silica adsorbent (MSH@MA). The MSH@MA NPs demonstrate highly selective adsorption of copper (Cu2+) ions (~190 mg/g) with a fast equilibrium adsorption time (30 min). The prepared adsorbent shows at least a five times more efficient recyclable stability. The MSH@MA NPs adsorbent is useful for selective adsorption of Cu2+ ions.In this paper, we present the procedure for fabricating a new magneto-tactile sensor (MTS) based on a low-cost commercial polyurethane sponge, including the experimental test configuration, the experimental process, and a description of the mechanisms that lead to obtaining the MTS and its characteristics. It is shown that by using a polyurethane sponge, microparticles of carbonyl iron, ethanol, and copper foil with electroconductive adhesive, we can obtain a high-performance and low-cost MTS. With the experimental assembly described in this paper, the variation in time of the electrical capacity of the MTS was measured in the presence of a deforming force field, a magnetic field, and a magnetic field superimposed over a deformation field. It is shown that, by using an external magnetic field, the sensitivity of the MTS can be increased. Using the magnetic dipole model and linear elasticity approximation, the qualitative mechanisms leading to the reported results are described in detail.In this investigation, p-Mg2Si/n-Si heterojunction photodetector (PD) is fabricated by magnetron sputtering and low vacuum annealing in the absence of argon or nitrogen atmosphere. Multilayer Graphene (MLG)/Mg2Si/Si heterojunction PD is first fabricated by transferring MLG to Mg2Si/Si heterojunction substrate using the suspended self-help transfer MLG method. After characterizing the phase composition, morphology and detection properties of Mg2Si/Si and MLG/Mg2Si/Si heterojunction PDs, the successful fabrication of the Mg2Si/Si and MLG/Mg2Si/Si heterojunction PDs are confirmed and some detection capabilities are realized. Compared with the Mg2Si/Si heterojunction PD, the light absorption and the ability to effectively separate and transfer photogenerated carriers of MLG/Mg2Si/Si heterojunction PD are improved. The responsivity, external quantum efficiency (EQE), noise equivalent power (NEP), detectivity (D*), on/off ratio and other detection properties are enhanced. The peak responsivity and EQE of the MLG/Mg2Si/Si heterojunction PD are 23.7 mA/W and 2.75%, respectively, which are better than the previous 1-10 mA/W and 2.3%. The results illustrate that the fabrication technology of introducing MLG to regulate the detection properties of the Mg2Si/Si heterojunction PD is feasible. In addition, this study reveals the potential of MLG to enhance the detection properties of optoelectronic devices, broadens the application prospect of the Mg2Si/Si-based heterojunction PDs and provides a direction for the regulation of optoelectronic devices.The present work introduces a simple, electrostatically driven approach to engineered nanomaterial built from the highly cytotoxic [Au2L2]2+ complex (Au2, L = 1,5-bis(p-tolyl)-3,7-bis(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane (PNNP) ligand) and the pH-sensitive red-emitting [Re6Q8(OH)6]4- (Re6-Q, Q = S2- or Se2-) cluster units. The protonation/deprotonation of the Re6-Q unit is a prerequisite for the pH-triggered assembly of Au2 and Re6-Q into Au2Re6-Q colloids, exhibiting disassembly in acidic (pH = 4.5) conditions modeling a lysosomal environment. The counter-ion effect of polyethylenimine causes the release of Re6-Q units from the colloids, while the binding with lysozyme restricts their protonation in acidified conditions. The enhanced luminescence response of Re6-S on the disassembly of Au2Re6-S colloids in the lysosomal environment allows us to determine their high lysosomal localization extent through the colocalization assay, while the low luminescence of Re6-Se units in the same conditions allows us to reveal the rapture of the lysosomal membrane through the use of the Acridine Orange assay. The lysosomal pathway of the colloids, followed by their endo/lysosomal escape, correlates with their cytotoxicity being on the same level as that of Au2 complexes, but the contribution of the apoptotic pathway differentiates the cytotoxic effect of the colloids from that of the Au2 complex arisen from the necrotic processes.