10/10/2024


Finally, the final seamlines are determined by Dijkstra's shortest path algorithm implemented with binary min-heap at the pixel level. The experimental results of three group data sets show the advantages of the proposed method. Compared with two previous methods, the seamlines obtained by the proposed method pass through the less obvious objects and mainly follow the roads. In terms of the computational efficiency, the proposed method also has a high efficiency.Benzotriazoles (BZTs) are high production volume industrial chemicals that are used in various applications such as corrosion inhibitors, antifreeze agents, and UV radiation stabilizers. Given their potential ecotoxicological implications for different ecosystems and in human health, as well as their poor biodegradability, they are of increasing concern. In this study, a new voltammetric method using commercial screen-printed electrodes (SPEs) has been developed for the sensing of BZTs in water samples to help in their environmental monitoring. https://www.selleckchem.com/products/azd9291.html To this end, different types of SPEs based on carbon nanoallotropes and copper were tested under several experimental conditions to determine the two BZTs most frequently detected in the environment 1H-benzotriazole (BZT) and 5-methyl-1H-benzotriazole (Me-BZT, tolyltriazole) as model compounds for BZTs. Carbon nanofibers electrodes exhibited the best performance, allowing detection limits as low as 0.4 mg L-1 for both BZTs, with repeatability and reproducibility of ca. 5%. The applicability of the method was tested through the determination of BZT in spiked drinking water samples, suggesting its suitability for the sensing of samples heavily polluted with BZTs.Transverse cracks on bridge decks provide the path for chloride penetration and are the major reason for deck deterioration. For such reasons, collecting information related to the crack widths and spacing of transverse cracks are important. In this study, we focused on developing a data pipeline for automated crack detection using non-contact optical sensors. We developed a data acquisition system that is able to acquire data in a fast and simple way without obstructing traffic. Understanding that GPS is not always available and odometer sensor data can only provide relative positions along the direction of traffic, we focused on providing an alternative localization strategy only using optical sensors. In addition, to improve existing crack detection methods which mostly rely on the low-intensity and localized line-segment characteristics of cracks, we considered the direction and shape of the cracks to make our machine learning approach smarter. The proposed system may serve as a useful inspection tool for big data analytics because the system is easy to deploy and provides multiple properties of cracks. Progression of crack deterioration, if any, both in spatial and temporal scale, can be checked and compared if the system is deployed multiple times.The fiber Bragg grating (FBG) sensor calibration process is critical for optimizing performance. Real-time dynamic calibration is essential to improve the measured accuracy of the sensor. In this paper, we present a dynamic calibration method for FBG sensor temperature measurement, utilizing the online sequential extreme learning machine (OS-ELM). During the measurement process, the calibration model is continuously updated instead of retrained, which can reduce tedious calculations and improve the predictive speed. Polynomial fitting, a back propagation (BP) network, and a radial basis function (RBF) network were compared, and the results showed the dynamic method not only had a better generalization performance but also had a faster learning process. The dynamic calibration enabled the real-time measured data of the FBG sensor to input calibration models as online learning samples continuously, and could solve the insufficient coverage problem of static calibration training samples, so as to improve the long-term stability, accuracy of prediction, and generalization ability of the FBG sensor.Seaweeds are a source of food throughout the Pacific region. Kiribati, however, does not have a strong history of using seaweed in their diets, despite having reliable access to indigenous edible seaweeds. A series of peer-led seaweed training workshops held in Kiribati between 2018 and 2019 provided women with knowledge, skills, and motivational support needed to engage in the seaweed supply chain, from harvesting, processing, and marketing to consumption. This study aimed to identify opportunities and enablers to support women's participation across the seaweed supply chain. Structured interviews with 49 women explored their interest and expected costs and benefits from involvement in the supply chain. There was high interest in most seaweed-related activities and the key motivators were health and nutrition for themselves and their family. Participants were also interested in developing and sharing new skills and saw the potential for income generation. However, there were also clear barriers including a desire for further training in seaweed harvesting, processing, and recipe creation; additional social support; and in public promotion. Given the natural resources and desire of women to engage in developing this new edible seaweed supply chain in Kiribati, there is now a need for capacity development to build social and economic wellbeing and food security across the broader community. Additional peer-to-peer training opportunities may look to other Pacific Islands where seaweed is already an established and traditional food.Polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) dispersed in ethanol, water and water/alginate were used to functionalize untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 fabric (PA66). The PVP-AgNPs dispersions were deposited onto PA66 by spray and exhaustion methods. The exhaustion method showed a higher amount of deposited AgNPs. Water and water-alginate dispersions presented similar results. Ethanol amphiphilic character showed more affinity to AgNPs and PA66 fabric, allowing better uniform surface distribution of nanoparticles. Antimicrobial effect in E. coli showed good results in all the samples obtained by exhaustion method but using spray method only the DBD plasma treated samples displayed antimicrobial activity (log reduction of 5). Despite the better distribution achieved using ethanol as a solvent, water dispersion samples with DBD plasma treatment displayed better antimicrobial activity against S. aureus bacteria in both exhaustion (log reduction of 1.9) and spray (methods log reduction of 1.