Utilization of ACE2 by SARS-CoV-2 in the renal cells, viral-induced tubular injury, and gastrointestinal abnormalities, such as anorexia, diarrhea, and vomiting may predispose COVID-19 patients to developing hypokalemia. Furthermore, depleted magnesium levels make hypokalemia refractory to treatments. In addition, hyperkalemia may occur because of reduced urinary output, as a consequence of renal failure. Changes in blood pH and medication-induced side-effects are other possible reasons for the deviation of potassium levels from the normal range. The etiology of potassium abnormalities in COVID-19 patients is multifactorial. Therefore, the early detection and management of potassium disorders is vital and would improve the outcome of patients with COVID-19. DOI 10.52547/ijkd.6552.Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal "megadrought" in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa, a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO2]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification.Soil heterotrophic respiration (R h) represents an important component of the terrestrial carbon cycle that affects whether ecosystems function as carbon sources or sinks. Due to the complex interactions between biological and physical factors controlling microbial growth, R h is uncertain and difficult to predict, limiting our ability to anticipate future climate trajectories. Here we analyze the global FLUXNET 2015 database aided by a probabilistic model of microbial growth to examine the ecosystem-scale dynamics of R h and identify primary predictors of its variability. We find that the temporal variability in R h is consistently distributed according to a Gamma distribution, with shape and scale parameters controlled only by rainfall characteristics and vegetation productivity. This distribution originates from the propagation of fast hydrologic fluctuations on the slower biological dynamics of microbial growth and is independent of biome, soil type, and microbial physiology. This finding allows us to readily provide accurate estimates of the mean R h and its variance, as confirmed by a comparison with an independent global dataset. Our results suggest that future changes in rainfall regime and net primary productivity will significantly alter the dynamics of R h and the global carbon budget. In regions that are becoming wetter, R h may increase faster than net primary productivity, thereby reducing the carbon storage capacity of terrestrial ecosystems.Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 "trios" (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10-4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C Both RYR2 mutations are pathogenic (P = 1.7 × 10-7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10-7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.Humans have an extraordinary ability to recognize and differentiate voices. It is yet unclear whether voices are uniquely processed in the human brain. To explore the underlying neural mechanisms of voice processing, we recorded electrocorticographic signals from intracranial electrodes in epilepsy patients while they listened to six different categories of voice and nonvoice sounds. Subregions in the temporal lobe exhibited preferences for distinct voice stimuli, which were defined as "voice patches." Latency analyses suggested a dual hierarchical organization of the voice patches. We also found that voice patches were functionally connected under both task-engaged and resting states. Furthermore, the left motor areas were coactivated and correlated with the temporal voice patches during the sound-listening task. Taken together, this work reveals hierarchical cortical networks in the human brain for processing human voices.The dicarbon molecule (C2) is found in flames, comets, stars, and the diffuse interstellar medium. In comets, it is responsible for the green color of the coma, but it is not found in the tail. It has long been held to photodissociate in sunlight with a lifetime precluding observation in the tail, but the mechanism was not known. Here we directly observe photodissociation of C2 From the speed of the recoiling carbon atoms, a bond dissociation energy of 602.804(29) kJ·mol[Formula see text] is determined, with an uncertainty comparable to its more experimentally accessible N2 and O2 counterparts. The value is within 0.03 kJ·mol-1 of high-level quantum theory. This work shows that, to break the quadruple bond of C2 using sunlight, the molecule must absorb two photons and undergo two "forbidden" transitions.Although declines in intent to vaccinate had been identified in international surveys conducted between June and October 2020, including in the United States, some individuals in the United States who previously expressed reluctance said, in spring 2021, that they were willing to vaccinate. That change raised the following questions What factors predicted an increased willingness to inoculate against COVID-19? And, to what extent was the change driven by COVID-specific factors, such as personal worry about the disease and COVID-specific misinformation, and to what extent by background (non-COVID-specific) factors, such as trust in medical authorities, accurate/inaccurate information about vaccination, vaccination history, and patterns of media reliance? This panel study of more than 8,000 individuals found that trust in health authorities anchored acceptance of vaccination and that knowledge about vaccination, flu vaccination history, and patterns of media reliance played a more prominent role in shifting individuals from vaccination hesitance to acceptance than COVID-specific factors. COVID-specific conspiracy beliefs did play a role, although a lesser one. These findings underscore the need to reinforce trust in health experts, facilitate community engagement with them, and preemptively communicate the benefits and safety record of authorized vaccines. The findings suggest, as well, the need to identify and deploy messaging able to undercut health-related conspiracy beliefs when they begin circulating.Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on "engrams" in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. https://www.selleckchem.com/JAK.html In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP- neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O2 in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH3), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH3 dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO2 as ammonium sulfite salts. This trapping of SO2 in the clouds, together with the release of SO2 below the clouds as the droplets settle out to higher temperatures, explains the vertical SO2 abundance anomaly. A consequence of the presence of NH3 is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH3 is unknown but could involve biological production; if so, then the most energy-efficient NH3-producing reaction also creates O2, explaining the detection of O2 in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.