08/30/2024


There was a significant decrease in TE in the sham-crTMS but not in the active-crTMS group. VTT and crTMS did not immediately affect the stability and sensory contribution of upright standing; however, crTMS immediately affected motor learning. The vermal cerebellum may contribute to motor learning of voluntary postural control.Morphine is the most widely used analgesic for pain management worldwide. Abstinence of morphine could lead to neuropsychiatric symptoms, including depression. Gut microbiota is believed to contribute to the development of depression. However, the characteristics and potential role of gut microbiota in morphine abstinence-induced depression remain unclear. In the present study, we first established morphine abstinence-induced depressive behavior in mice. After dividing the mice into depressive and non-depressive groups, the gut microbiota of the mice was detected by 16S rRNA gene sequencing. The difference in the diversities and abundance of the gut microbiota were analyzed between groups. Then, the representative microbial markers that could distinguish each group were identified. In addition, gene function prediction of the operational taxonomic units (OTUs) with differential abundance between the depressive and non-depressive groups after morphine abstinence was conducted. Our results suggested that four weeks of abstinence from morphine did not change the richness of the gut microbiota. However, morphine abstinence influenced the gut microbial composition. Several specific genera of gut microbiota were identified as markers for each group. Interestingly, gene function prediction found that the fatty acid metabolism pathway was enriched in the OUTs in the depressive group compared with the non-depressive group after morphine abstinence. Our data suggested that gut microbiota dysbiosis was associated with morphine abstinence-induced depressive behavior, possibly by implicating the fatty acid metabolism pathway.Neuroinflammation is usually associated with cognitive decline, which is involved in neurodegenerative diseases. Apelin, a neuropeptide, exerts various biological roles in central nervous system. Recent evidence showed that apelin-13, an active form of apelin, suppresses neuroinflammation and improves cognitive decline in diverse pathological processes. However, the underlying mechanism of apelin-13 in neuroinflammation remains largely unknown. The present study aimed to determine underlying mechanism of apelin-13 on neuroinflammation-related cognitive decline. The lipopolysaccharide (LPS) intracerebroventricular (i.c.v.) to is used to establish a rat model of neuroinflammation-related cognitive decline. The results showed that apelin-13 inhibits LPS-induced neuroinflammation and improves cognitive impairment. Apelin-13 upregulates the GR level and nuclear translocation in hippocampus of rats. Moreover, glucocorticoid receptor inhibitor RU486 prevents apelin-13-mediated neuroprotective actions on cognitive function. Taken together, apelin-13 could exert a protective effect in neuroinflammation-mediated cognitive impairment via the activation of GR expression and nuclear translocation.Projections to the striatum are well-identified. For example, in the ventral striatum, two major inputs to the medial nucleus accumbens shell include the ventral subiculum and basolateral amygdala. However, the chemical phenotype(s) of these projection neurons remain unclear. In this study, we examined amygdalostriatal and corticostriatal connectivity in rats using injections of the retrograde tracer cholera toxin b into the nucleus accumbens shell. To determine the neurotransmitter identity of projection neurons, we combined retrograde tracing with RNAscope in-situ hybridization, using mRNA probes against vesicular transporters associated with glutamatergic (VGluT1 - Slc17a7, VGluT2 - Slc17a6) or GABAergic (VGaT - Slc32a1) neurotransmission. Confocal imaging was used to examine vesicular transporter mRNA expression in the ventral subiculum and basolateral amygdala inputs to the nucleus accumbens shell. Both projections contained mostly VGluT1-expressing neurons. Interestingly, almost a quarter of ventral subiculum to nucleus accumbens shell projections co-expressed VGluT1 and VGluT2 compared to a relatively small number (∼3%) that were co-expressed in basolateral amygdala to nucleus accumbens shell afferents. However, almost a quarter of basolateral amygdala to nucleus accumbens shell projections were VGaT-positive. These findings highlight the diverse proportions of glutamatergic and GABAergic afferents in two major projections to the nucleus accumbens shell and raise important questions for functional studies.Haloxylon ammodendron, a xero-halophytic shrub of Chenopodiaceae, is a dominant species in deserts, which has a strong drought and salt tolerance and plays an important role in sand fixation. However, the codon usage bias (CUB) in H. ammodendron is still unclear at present. In this study, the codon usage patterns of 38,657 coding sequences (CDSs) in the newly released whole-genome sequence data of H. ammodendron and 3,948 CDSs in the previously obtained transcriptome sequencing data were compared and analyzed. The results showed that the CDSs with the total guanineandcytosine(GC)content in the range of 40-45 % was the most in the genome and transcriptome. Among which, the GC1, GC2, and GC3 contents of genomic CDSs were 50.83 %, 40.56 %, and 40.23 %, respectively, and those of CDSs in the transcriptome were 47.16 %, 39.02 %, and 39.59 %, respectively. Therefore, the bases in H. ammodendron were rich in adenine and thymine, and the overallcodonusage was biasedtoward A- and U-ending codons. The analysis of neutrification of new genes and the genetic engineering study on H. ammodendron.Anthocyanins and vitamins in black rice are the micronutrients vital to human health, both of which predominantly accumulate in the bran fraction. Some studies have demonstrated that black rice contains more vitamins compared with common white rice, indicating potential association between anthocyanin and vitamin accumulation. In this study, transcriptomes of pericarps collected from 27 black rice accessions and 49 white rice accessions at 10 days after flowering (DAF) were sequenced and analyzed. We identified 830 differentially expressed genes (DEGs) including 58 transcription factors (TFs) between black and white rice. Among 58 differentially expressed transcription factors, OsTTG1 was confirmed to be the one and only WD40 repeat protein regulating anthocyanin biosynthesis in the pericarp. Moreover, we identified 53 differentially expressed synthetic-related genes among 42 main synthesis enzymes in the biosynthesis pathway of seven vitamins including β-carotene, vitamin B1, vitamin B2, vitamin B5, vitamin B7, vitamin B9 and vitamin E. Collectively, our results provide valuable insights into the molecular mechanism of biosynthesis of anthocyanins and vitamins and the potential effect of anthocyanin biosynthesis on vitamin biosynthesis in black rice.Changes in motivation have been observed following induction of diet-induced obesity. However, to date, results have been contradictory, some authors reporting an increase in motivation to obtain palatable food, but others observing a decrease. Observed differences might be associated with the length of both the evaluation period and exposure to the diet. Therefore, the aim of this study was to evaluate changes in motivation during 20 weeks of exposure to a hypercaloric diet. Performance of the subjects in a progressive ratio schedule was evaluated before and during the exposure to a high-fat, high-sugar choice diet (HFHSc). A decrease in motivation was observed after 2 weeks of diet exposure, low levels of motivation remained throughout 20 weeks. A comparable decrease in motivation took longer (3 weeks) to develop using chow diet in the control group. Overall, our results suggest that, when changes in motivation are being evaluated, long periods of diet exposure made no further contribution, once motivation decreased, it remained low up to 18 weeks. Exposure to a HFHSc diet is a useful animal model of obesity, since it replicates some pathophysiological and psychological features of human obesity such as an increase in fasting glucose levels, body weight and the weight of adipose tissue.Animals can eavesdrop on other competitors during territorial defense disputes to better choose rivals weaker than themselves and increase the chances of monopolizing resources. In dragonflies, males often compete for access to water bodies, which attract sexually receptive females to mate and lay eggs. During the breeding season, satellite males can observe fights between territory owners and intruders and, therefore, obtain information about potential rivals through visual cues. Consequently, weaker competitors may face more intense competition than stronger ones when defending a territory. In this study, we conducted field experiments with the dragonfly Erythrodiplax fusca to investigate whether eavesdropping on territorial disputes, using visual cues, affects the intensity of competition that territory owners face. We recorded the number of intruders that engage in disputes against males that recently occupied territories in two groups the "eavesdropping" group (i.e., individuals with access to rivals' prior information) and the control group (i.e., competitors with no access to prior information). The number of intruders was greater in the eavesdropping group compared to the control group. https://www.selleckchem.com/products/mps1-in-6-compound-9-.html This effect depended on the interaction between the size of the territory owners and the presence of eavesdropping. The number of intruders decreased with increase in the size of the owners in the presence of eavesdropping, but this relationship did not occur in the control group. We discuss the implications of our findings for the male decision-making process to initiate agonistic disputes and how investigating eavesdropping behavior can improve current models of conflict resolution in animals.Auditory patterns carry information in human speech at multiple levels, including the surface relationships between sounds within words in phonology and the abstract structures of syntax. The sequences of other animal vocalizations, such as birdsong, can also be described as auditory patterns, but few studies have probed how the sequences are perceived at multiple levels. Past work shows that a small parrot species, the budgerigar (Melopsittacus undulatus), exceeds other birds in sequence perception and is even sensitive to abstract structure. But it is not known what level of auditory analysis is dominant in perception or what limits might exist in sensitivity to abstract structure. Here, budgerigars were tested on their ability to discriminate changes in an auditory pattern, AAB, i.e. sound-same different, to ask how they attended to surface relationships among the sounds and the abstract relationships of same/different among the elements. The results show that the budgerigars primarily used surface transitions between the sounds when discriminating the sequences, but were able to use the abstract relationships to a limited extent, largely restricted to two elements. This study provides insight into how budgerigars extract information from conspecific vocalizations and how their capacities compare to human speech perception.