09/11/2024


Under a high-emissions scenario, we find that 35% of mammals and 29% of birds are projected to have over half of their 2070 climatic niche in countries in which they are not currently found. We map these transboundary range shifts globally, identifying borders across which international coordination might most benefit conservation and where physical border barriers, such as walls and fences, may be an overlooked obstacle to climate adaptation. Our work highlights the importance of sociopolitical context and the utility of a supranational perspective for 21st century nature conservation.Meiotic recombination is a fundamental process that generates genetic diversity and ensures the accurate segregation of homologous chromosomes. While a great deal is known about genetic factors that regulate recombination, relatively little is known about epigenetic factors, such as DNA methylation. In maize, we examined the effects on meiotic recombination of a mutation in a component of the RNA-directed DNA methylation pathway, Mop1 (Mediator of paramutation1), as well as a mutation in a component of the trans-acting small interference RNA biogenesis pathway, Lbl1 (Leafbladeless1). MOP1 is of particular interest with respect to recombination because it is responsible for methylation of transposable elements that are immediately adjacent to transcriptionally active genes. In the mop1 mutant, we found that meiotic recombination is uniformly decreased in pericentromeric regions but is generally increased in gene rich chromosomal arms. This observation was further confirmed by cytogenetic analysis showing that although overall crossover numbers are unchanged, they occur more frequently in chromosomal arms in mop1 mutants. Using whole genome bisulfite sequencing, our data show that crossover redistribution is driven by loss of CHH (where H = A, T, or C) methylation within regions near genes. In contrast to what we observed in mop1 mutants, no significant changes were observed in the frequency of meiotic recombination in lbl1 mutants. Our data demonstrate that CHH methylation has a significant impact on the overall recombination landscape in maize despite its low frequency relative to CG and CHG methylation.The type VI secretion system (T6SS) is a phage-derived contractile nanomachine primarily involved in interbacterial competition. Its pivotal component, TssA, is indispensable for the assembly of the T6SS sheath structure, the contraction of which propels a payload of effector proteins into neighboring cells. Despite their key function, TssA proteins exhibit unexpected diversity and exist in two major forms, a short form (TssAS) and a long form (TssAL). While TssAL proteins interact with a partner, called TagA, to anchor the distal end of the extended sheath, the mechanism for the stabilization of TssAS-containing T6SSs remains unknown. Here we discover a class of structural components that interact with short TssA proteins and contribute to T6SS assembly by stabilizing the polymerizing sheath from the baseplate. We demonstrate that the presence of these components is important for full sheath extension and optimal firing. Moreover, we show that the pairing of each form of TssA with a different class of sheath stabilization proteins results in T6SS apparatuses that either reside in the cell for some time or fire immediately after sheath extension. We propose that this diversity in firing dynamics could contribute to the specialization of the T6SS to suit bacterial lifestyles in diverse environmental niches.The integration of two or more distinct sensory cues can help animals make more informed decisions about potential food sources, but little is known about how feeding-related multimodal sensory integration happens at the cellular and molecular levels. Here, we show that multimodal sensory integration contributes to a stereotyped feeding behavior in the model organism Drosophila melanogaster Simultaneous olfactory and mechanosensory inputs significantly influence a taste-evoked feeding behavior called the proboscis extension reflex (PER). Olfactory and mechanical information are mediated by antennal Or35a neurons and leg hair plate mechanosensory neurons, respectively. We show that the controlled delivery of three different sensory cues can produce a supra-additive PER via the concurrent stimulation of olfactory, taste, and mechanosensory inputs. We suggest that the fruit fly is a versatile model system to study multisensory integration related to feeding, which also likely exists in vertebrates.The properties of periodic cellular structures strongly depend on the regular spatial arrangement of their constituent base materials and can be controlled by changing the topology and geometry of the repeating unit cell. Recent advances in three-dimensional (3D) fabrication technologies more and more expand the limits of fabricable real-world architected materials and strengthen the need of novel microstructural topologies for applications across all length scales and fields in both fundamental science and engineering practice. Here, we systematically explore, interpret, and analyze publicly available crystallographic network topologies from a structural point of view and provide a ready-to-use unit cell catalog with more than 17,000 unique entries in total. We show that molecular crystal networks with atoms connected by chemical bonds can be interpreted as cellular structures with nodes connected by mechanical bars. By this, we identify new structures with extremal properties as well as known structures such as the octet-truss or the Kelvin cell and show how crystallographic symmetries are related to the mechanical properties of the structures. Our work provides inspiration for the discovery of novel cellular structures and paves the way for computational methods to explore and design microstructures with unprecedented properties, bridging the gap between microscopic crystal chemistry and macroscopic structural engineering.Socioeconomic development in low- and middle-income countries has been accompanied by increased emissions of air pollutants, such as nitrogen oxides [NOx nitrogen dioxide (NO2) + nitric oxide (NO)], which affect human health. In sub-Saharan Africa, fossil fuel combustion has nearly doubled since 2000. At the same time, landscape biomass burning-another important NOx source-has declined in north equatorial Africa, attributed to changes in climate and anthropogenic fire management. Here, we use satellite observations of tropospheric NO2 vertical column densities (VCDs) and burned area to identify NO2 trends and drivers over Africa. Across the northern ecosystems where biomass burning occurs-home to hundreds of millions of people-mean annual tropospheric NO2 VCDs decreased by 4.5% from 2005 through 2017 during the dry season of November through February. https://www.selleckchem.com/products/wnk463.html Reductions in burned area explained the majority of variation in NO2 VCDs, though changes in fossil fuel emissions also explained some variation. Over Africa's biomass burning regions, raising mean GDP density (USD⋅km-2) above its lowest levels is associated with lower NO2 VCDs during the dry season, suggesting that economic development mitigates net NO2 emissions during these highly polluted months. In contrast to the traditional notion that socioeconomic development increases air pollutant concentrations in low- and middle-income nations, our results suggest that countries in Africa's northern biomass-burning region are following a different pathway during the fire season, resulting in potential air quality benefits. However, these benefits may be lost with increasing fossil fuel use and are absent during the rainy season.The perception of and response to danger is critical for an individual's survival and is encoded by subcortical neurocircuits. The amygdaloid complex is the primary neuronal site that initiates bodily reactions upon external threat with local-circuit interneurons scaling output to effector pathways. Here, we categorize central amygdala neurons that express secretagogin (Scgn), a Ca2+-sensor protein, as a subset of protein kinase Cδ (PKCδ)+ interneurons, likely "off cells." Chemogenetic inactivation of Scgn+/PKCδ+ cells augmented conditioned response to perceived danger in vivo. While Ca2+-sensor proteins are typically implicated in shaping neurotransmitter release presynaptically, Scgn instead localized to postsynaptic compartments. Characterizing its role in the postsynapse, we found that Scgn regulates the cell-surface availability of NMDA receptor 2B subunits (GluN2B) with its genetic deletion leading to reduced cell membrane delivery of GluN2B, at least in vitro. Conclusively, we describe a select cell population, which gates danger avoidance behavior with secretagogin being both a selective marker and regulatory protein in their excitatory postsynaptic machinery.Piperacillin-tazobactam is a broad-spectrum antimicrobial agent that is commonly used in clinical practice. The development of delayed drug hypersensitivity reaction (DHR) has been reported in several cases previously. Here we describe an unusual case of non-immediate DHR due to a prolonged course of piperacillin-tazobactam. We report a 22-year-old man who developed fever, eosinophilia, thrombocytopenia and elevated hepatic enzymes following 17 days of piperacillin-tazobactam for methicillin-sensitive Staphylococcus aureus (MSSA) pneumonia. These adverse reactions were reversed immediately after antibiotic cessation. Our case highlights that clinicians should be aware of delayed adverse effects in patients receiving long-term piperacillin-tazobactam treatment.
To compare rectal and axillary temperatures in preterm newborns on admission to the neonatal intensive care unit (NICU).

Secondary analysis of data collected in a randomised controlled trial (RCT).

Maternity hospital, level 3 NICU.

Seventy-two newborns <31 weeks who were enrolled in the BAMBINO RCT (A randomised trial of exothermic mattresses to prevent heat loss in preterm infants at birth, ISRCTN31707342).

Newborns were placed in polyethylene bags and were randomised to placement on exothermic mattresses, or not in the delivery room. All infants had rectal and axillary temperatures measured in immediate succession using a digital thermometer on NICU admission.

Admission rectal and axillary temperatures.

Mean (SD) gestational age was 28 (2) weeks and birth weight was 1138 (374) g. Mean rectal-axillary temperature difference was 0.1 (0.5°C) (range -1.4°C to +1.5°C). Rectal and axillary temperatures differed by ≥0.5°C in 18/72 (25%) infants; axillary temperature was higher than rectal in 6 (8%l temperature measurement in all preterm newborns on NICU admission.
Little is known about adherence to asthma biologics.

Is adherence to inhaled corticosteroid (ICS) associated with subsequent asthma biologic adherence?

We analyzed individuals with asthma who started asthma biologics in the OptumLab Data Warehouse and used that data until October 2019. We calculated proportion days covered (PDC) for ICS ± long-acting β-agonists in the 6months before and after asthma biologics were started and asthma biologic PDC for the first 6months of use. We performed a multivariable analysis to identify factors associated with asthma biologic PDC≥0.75, ICS PDC≥0.75 during the 6-month period after asthma biologic were started, and achievement of a≥50%reduction in asthma exacerbations during the first 6months of asthma biologic use.

We identified 5,319 people who started asthma biologics. The mean PDC for asthma biologics was 0.76 (95%CI, 0.75-0.77) in the first 6months after starting, higher than the mean PDCs for ICS in the 6months before (0.44 [95%CI, 0.43-0.45]) and after (0.40 [95%CI, 0.