The effect of cultivar, ripening stage, and pre-treatment method were investigated on the nutritional, physicochemical, and pasting properties of plantain flours from two plantains and two plantain hybrids. There were significant variations (p less then 0.05) in chemical composition and physical properties influenced by the interaction of cultivars, ripening stages, and pre-treatment methods. The highest levels of amylose, water-holding capacity (WHC), and oil-holding capacity (OHC) were observed in unripe flours and acid-treated flour recorded the highest content of resistant starch (RS). Flour after pre-blanching contained the highest level of total phenolic (TP), carotenoid contents, and browning index (BI) value. In contrast, acid-treated flours had the lowest BI value. As ripening progressed, peak viscosity and breakdown values increased but final viscosity, setback, and pasting temperature values were reduced. Untreated flour samples showed the highest peak viscosity. Higher breakdown values were found in acid-treated samples and higher setback values in pre-blanched samples.The effect of nitrate/nitrite (0, 37.5, 75, and 150 mg/kg) in the dry-cured loin formulation on the formation of lipid and protein oxidation products during in vitro digestion was evaluated. Dry-cured loins formulated with nitrate/nitrite resulted in significantly less lipid and protein oxidation than uncured loins before and after simulated digestion. Compared to loins added with 0 mg/kg nitrate/nitrite, dry-cured loins with 37.5, 75, and 150 mg/kg contained a significantly lower content of conjugated dienes, malondialdehyde, carbonyls, and non-heme iron, and higher amounts of nitrosylmioglobin and thiols. During in vitro digestion, the content of conjugated dienes, malondialdehyde, and carbonyls increased, while thiol content decreased, indicating the development of lipid and protein oxidative processes. At the end of the intestinal phase, the 75 mg/kg digests had a significantly higher content of conjugated dienes, while no differences were found among the other digests. During the in vitro intestinal phase (180 and 240 min), nitrate/nitrite curing resulted in significantly lower malondialdehyde concentrations in the 37.5, 75, and 150 mg/kg loin digests than in the uncured loin digests. No significant differences were observed at the end of the intestinal digestion phase between the cured loin digests. Digests of dried loins without nitrate/nitrite addition showed higher carbonyl contents than the nitrate/nitrite cured counterparts. The loss of thiols was significantly higher in loin digests without added nitrate/nitrite than in loin digests with different amounts of curing salts. The addition of 37.5 mg/kg nitrate/nitrite in the cured loin formulation prevents the formation of lipid peroxidation products and carbonyls from protein oxidation and thiol loss during digestion.Bioactive compounds (BC) present in muicle leaves were extracted using the best extraction conditions obtained with a Box-Behnken experimental design, extracting 95% of BC. Microencapsulation of muicle BC was carried out by spray drying using DE10 maltodextrin (MD) and soy protein isolate (SPI) as encapsulating agents. The best conditions for the ethanolic extraction of BC from muicle were 30 °C, 40% aqueous ethanol, and one extraction for 1 h. The best spray drying encapsulating conditions for BC and antioxidant capacity (AC) using MD as an encapsulating agent were 160-80 °C and 10% MD in the feeding solution, and for SPI 180-70 °C and 5% SPI in the feeding solution. Microcapsules were added to yogurt and a sensory evaluation and retention of BC during 15-day storage at 4 °C was performed. Sensory evaluation showed that yogurt with added MD microcapsules had better acceptance than that with SPI microcapsules. Based on this, a jelly with added muicle MD microcapsules was also prepared which obtained better acceptance by the judges. At the end of the storage period, yogurt with SPI microcapsules showed better retention of BC and AC than yogurts with MD microcapsules; however, products with MD microcapsules had better acceptance.A new method was proposed for the determination of underivatized biogenic amines based on ion-exchange chromatography coupled with mass spectrometry detection. The method was applied to the analysis of 10 biogenic amines in fresh and processed fish products. The amines were extracted from muscle tissue with water without any additional derivative step or sample clean-up. Separation of biogenic amines was done by the IonPac (4 × 50 mm) column, applying a gradient eluent by mixing formic acid (2 mol L-1) and Milli-Q water (formic acid concentration from 400 mM to 2 M). The results demonstrated a linear response in the range of 0.01 to 10 mg L-1. The detection limits for the fish products ranged from 20 ng/g up to around 400 ng/g for histamine and putrescine, respectively. Spermidine and spermine showed significantly higher detection limits. This current method can be used for the determination of biogenic amines in both fresh and processed fish products for regulatory purposes and monitoring food-safety issues relating to these amines, particularly histamine. It is also a useful method for evaluation of other commercial analytical test kits and commonly used methods that are possibly affected by the food matrix due to processing or other drawbacks arising from the derivatization process.Anthocyanins are the most important polyphenolic substances contained in blackcurrant fruits. They are responsible for the various health benefits caused, in particular, by their high antioxidant activity. Anthocyanins derived from anthocyanidins cyanidin and delphinidin are typical for blackcurrant fruits, especially their rutinoside and glucoside forms. These four anthocyanins usually represent about 97-98% of total anthocyanins in blackcurrant fruits. In this study, we developed and validated a new HPLC-DAD method for rapid anthocyanin separation and determination in fifteen perspective blackcurrant cultivars ('Ruben', 'Ben Lomond', 'Ben Conan', 'Ceres', 'Moravia', 'Ometa', 'Lota', 'Fokus', 'Tenah', 'Sejanec', 'Consort', 'Triton', 'Ben Hope', 'Ben Gairn', and one gooseberry hybrid 'Josta'). Eight of them were monitored throughout the three-year experiment. The most represented anthocyanins in all monitored blackcurrant cultivars were delphinidin-3-rutinoside (36.7-63.6%), cyanidin-3-rutinoside (26.4-40.6%), delphinidin-3-glucoside (6.1-17.9%), and cyanidin-3-glucoside (1.3-9.9%). The individual anthocyanin proportion (%) in each cultivar was specific, and a similar profile was verified in a three-year period for eight available cultivars. Total anthocyanin content expressed as a sum of four major anthocyanins present in blackcurrants was compared with values expressed as the equivalent of cyanidin-3-glucoside, as many authors do. We revealed an underestimation of about 20% with the latter method. Cultivars with the highest average total anthocyanin content were 'Ben Gairn' (294.38 mg/100 g), 'Ceres' (281.31 mg/100 g), and 'Ometa' (269.09 mg/100 g).Two types of patties were prepared control and with chia seeds gel instead of beaten egg. The patties were cooked in the steam-convection oven, vacuum packed and stored at 4 °C. The pork patties with chia addition were characterized by similar water activity and pH values to the control samples. They showed lower values of the b* colour parameter as well as colour saturation (C*) and hue angle values (h°) on the cross-section and lower values of colour parameters L*, a* and b* and C* on the surface than the controls. The addition of chia seeds improved the texture parameters of the tested products. Pork patties with chia seeds were softer and showed better chewiness than the control samples. Chia slowed down oxidative changes in pork patties during storage. The use of 8.0% addition of chia seeds was only slightly noticeable in taste of the pork patties and these samples received similar overall quality scores as control samples.The rapid quantification of capsaicinoids content is very important for the standardization of pungent taste degree and flavor control of soy sauce and pot-roast meat products. To rapidly quantify the capsaicinoids content in soy sauce and pot-roast meat products, an electrochemical sensor based on β-cyclodextrin/carboxylated multi-wall carbon nanotubes was constructed and the adsorptive stripping voltammetry method was used to enrich samples in this study. The results showed that the excellent performance of the established electrochemical sensor was mostly because β-cyclodextrin caused the relative dispersion of carboxylated multi-wall carbon nanotubes on the glassy carbon electrode surface. Capsaicin and dihydrocapsaicin had similar electrochemical behavior, so the proposed method could determine the total content of capsaicinoids. The linearity of capsaicinoids content was from 0.5 to 100 μmol/L and the detection limit was 0.27 μmol/L. The recovery rates of different capsaicinoids content were between 83.20% and 136.26%, indicating the proposed sensor could realize trace detection of capsaicinoids content in sauce and pot-roast meat products. This work provides a research basis for pungent taste degree standardization and flavor control in the food industry.The control of Salmonella in chicken processing plants is an ongoing challenge for many factories around the globe, especially with the increasing demand for poultry escalating processing throughputs. https://www.selleckchem.com/products/Isradipine(Dynacirc).html Foodborne outbreaks due to Salmonella still pose a prominent risk to public health. As chicken meat is a good reservoir for Salmonella, it is important for chicken processing plants to continuously optimize methods to reduce the incidence of Salmonella on their products. Current methods include the use of chemical antimicrobials such as chlorine-containing compounds and organic acids. However, these current methods are decreasing in popularity due to the rising rate of Salmonella resistance, coupled with the challenge of preserving the sensory properties of the meat, along with the increasing stringency of antimicrobial use. Bacteriophages are becoming more appealing to integrate into the large-scale hurdle concept. A few factors need to be considered for successful implementation, such as legislation, and application volumes and concentrations. Overall, bacteriophages show great potential because of their host specificity, guaranteeing an alternative outcome to the selective pressure for resistant traits placed by chemicals on whole microbial communities.The response surface methodology (RSM) and central composite design (CCD) technique were used to optimize the three key process parameters (i.e., pressure, temperature and holding time) of the high-hydrostatic-pressure (HHP) processing either standalone or combined with moderate thermal processing to modulate molecular structures of β-lactoglobulin (β-Lg) and α-lactalbumin (α-La) with reduced human IgE-reactivity. The RSM model derived for HHP-induced molecular changes of β-Lg determined immunochemically showed that temperature (temp), pressure (p2) and the interaction between temperature and time (t) had statistically significant effects (p less then 0.05). The optimal condition defined as minimum (β-Lg specific) IgG-binding derived from the model was 505 MPa at 56 °C with a holding time of 102 min (R2 of 0.81 and p-value of 0.01). The validation carried at the optimal condition and its surrounding region showed that the model to be underestimating the β-Lg structure modification. The molecular change of β-Lg was directly correlated with HHP-induced dimerization in this study, which followed a quadratic equation.