sinica larvae, of which changes in amnio acid metabolism were particularly pronounced. A working model was proposed to illustrate differential changes in 20 metabolites related to some amino acid metabolisms. Among them, 15 were markedly reduced and only five were elevated. Our results suggest that azadirachtin application may not be exclusively compatible with the use of the predator C. sinica for control of P. xylostella. It is recommended that the compatibility should be evaluated not only based on the survival of the predatory insects but also by the metabolic changes and the resultant detrimental effects on their development.Increasing consumer demand for natural flavours and fragrances has driven up prices and increased pressure on natural resources. A shift in consumer preference towards more sustainable and economical sources of these natural additives and away from synthetic production has encouraged research into alternative supplies of these valuable compounds. Solid-state fermentation processes support the natural production of secondary metabolites, which represents most flavour and aroma compounds, while agro-industrial by-products are a low-value waste stream with a high potential for adding value. Accordingly, four filamentous fungi species with a history of use in the production of fermented foods and food additives were tested to ferment nine different agro-industrial by-products. Hundreds of volatile compounds were produced and identified using headspace (HS) solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Four compounds of interest, phenylacetaldehyde, methyl benzoate, 1-octen-3-ol, and phenylethyl alcohol, were extracted and quantified. Preliminary yields were encouraging compared to traditional sources. This, combined with the low-cost substrates and the high-value natural flavours and aromas produced, presents a compelling case for further optimisation of the process.Eleven species of lichens of the genus Sticta, ten of which were collected in Colombia (S. pseudosylvatica S. luteocyphellata S. cf. andina S. cf. hypoglabra, S. cordillerana, S. cf. gyalocarpa S. https://www.selleckchem.com/GSK-3.html leucoblepharis, S. parahumboldtii S. impressula, S. ocaniensis) and one collected in Chile (S. lineariloba), were analyzed for the first time using hyphenated liquid chromatography with high-resolution mass spectrometry. In the metabolomic analysis, a total of 189 peaks were tentatively detected; the analyses were divided in five (5) groups of compounds comprising lipids, small phenolic compounds, saturated acids, terpenes, and typical phenolic lichen compounds such as depsides, depsidones and anthraquinones. The metabolome profiles of these eleven species are important since some compounds were identified as chemical markers for the fast identification of Sticta lichens for the first time. Finally, the usefulness of chemical compounds in comparison to traditional morphological traits to the study of ancestor-descendant relationships in the genus was assessed. Chemical and morphological consensus trees were not consistent with each other and recovered different relationships between taxa.The aspartate transaminase to platelet ratio index (APRI) has been proposed as an easy-to-use biochemical marker in obese adults with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatotic hepatitis (NASH). The objective of the present study was to evaluate the clinical and predictive value of APRI in a paediatric obese population. Seven hundred fifty-seven obese children and adolescents (BMI standard deviation score, SDS >2.0; age range 10-18.5 years), not consuming alcohol and without hepatitis B or C, were recruited after having been screened for NAFLD by ultrasonography. A series of demographic, biochemical and clinical parameters was compared between the two subgroups (with or without NAFLD); the same parameters were correlated with APRI; and finally, univariable and multivariable logistic regression was used to evaluate the predictors of NAFLD. NAFLD was diagnosed in about 39% of the entire paediatric population, predominantly in males and in subjects suffering from metabolic syndrome. APs, APRI appears to be a simple biochemical marker of liver injury rather than of NAFLD/NASH and, moreover, is endowed with a limited accuracy for the prediction/diagnosis of NAFLD.Cancer is widely regarded to be a genetic disease. Indeed, over the past five decades, the genomic perspective on cancer has come to almost completely dominate the field. However, this genome-only view is incomplete and tends to portray cancer as a disease that is highly heritable, driven by hundreds of complex genetic interactions and, consequently, difficult to prevent or treat. New evidence suggests that cancer is not as heritable or purely genetic as once thought and that it really is a multi-omics disease. As highlighted in this review, the genome, the exposome, and the metabolome all play roles in cancer's development and manifestation. The data presented here show that >90% of cancers are initiated by environmental exposures (the exposome) which lead to cancer-inducing genetic changes. The resulting genetic changes are, then, propagated through the altered DNA of the proliferating cancer cells (the genome). Finally, the dividing cancer cells are nourished and sustained by genetically reprogrammed, cancer-specific metabolism (the metabolome). As shown in this review, all three "omes" play roles in initiating cancer. Likewise, all three "omes" interact closely, often providing feedback to each other to sustain or enhance tumor development. Thanks to metabolomics, these multi-omics feedback loops are now much more evident and their roles in explaining the hallmarks of cancer are much better understood. Importantly, this more holistic, multi-omics view portrays cancer as a disease that is much more preventable, easier to understand, and potentially, far more treatable.Sleeve gastrectomy (SG) is a bariatric surgery that can effectively reduce weight and improve obesity-associated comorbidities. However, surgical stress intensifies inflammation and imbalanced metabolic profiles. Arginine (Arg) is a nutrient with immunomodulatory and anti-inflammatory properties. This study evaluated the short-term effects of Arg administration on adipocyte inflammation and metabolic alterations in obese mice after SG. Mice were assigned to normal and high-fat diet (HFD) groups. After 16 weeks, the HFD group were divided to sham (SH), SG with saline (SS), or Arg (SA) groups. SS and SA groups were postoperatively injected with saline or Arg via the tail vein and sacrificed at day 1 or 3 after the SG, respectively. Results showed that obesity caused elevated plasma glucose and leptin levels. The SG operation enhanced the expression of inflammatory cytokines and macrophage infiltration in adipose tissues, whereas hepatocyte gene expressions associated with lipid β-oxidation were downregulated. Arg treatment reversed the expressions of β-oxidation-associated genes and reduced lipid peroxide production in the liver. Additionally, adipose tissue expressions of inflammatory chemokines were reduced, while the M2 macrophage marker increased after surgery. The findings suggest that postoperative Arg administration elicited more balanced hepatic lipid metabolism, polarized macrophages toward the anti-inflammatory type, and attenuated adipocyte inflammation shortly after SG.Obstructive sleep apnea (OSA) and depression are highly comorbid. Immune alterations, oxidative stress or microbiota dysfunction have been proposed as some mechanisms underlying this association. The aim of the proposed study is to assess the severity and profile of OSA and depressive symptoms in the context of serum microbiota metabolites, biomarkers of intestinal permeability, inflammation and oxidative stress in adult patients diagnosed with OSA syndrome. The study population consists of 200 subjects. An apnoea-hypopnoea index ≥ 5/hour is used for the diagnosis. Depressive symptoms are assessed with Beck Depression Inventory. Measured serum markers are tumour necrosis factor-alpha and interleukin-6 for inflammation, total antioxidant capacity and malondialdehyde concentration for oxidative stress, zonulin, calprotectin, lipopolisaccharide-binding protein and intestinal fatty acids-binding protein for intestinal permeability. All of the above will be measured by enzyme-linked immunosorbent assay (ELISA). Associations between clinical symptoms profile and severity and the above markers levels will be tested. It would be valuable to seek for overlap indicators of depression and OSA to create this endophenotype possible biomarkers and form new prophylactic or therapeutic methods. The results may be useful to establish a subpopulation of patients sensitive to microbiota therapeutic interventions (probiotics, prebiotics, and microbiota transplantation).Inflammation and oxidative stress are well established in systemic lupus erythematosus (SLE) and are critical to the pathogenesis of autoimmune diseases. The transcription factor NF-E2 related factor 2 (Nrf2) is a central regulator of cellular anti-oxidative responses, inflammation, and restoration of redox balance. Accumulating reports support an emerging role for the regulation of Nrf2 in SLE. These include findings on the development of lupus-like autoimmune nephritis and altered immune cell populations in mice lacking Nrf2, as well as decreased Nrf2 abundance in the dendritic cells of patients with SLE. Nrf2-inducing agents have been shown to alleviate oxidative and inflammatory stress and reduce tissue injury in SLE mouse models. Since Nrf2 expression can be increased in activated T cells, the precise role of Nrf2 activation in different immune cell types and their function remains to be defined. However, targeting Nrf2 for the treatment of diseases associated with oxidative stress and inflammation, such as SLE, is promising. As investigation of Nrf2-inducing agents in clinical trials grows, defining the signaling and molecular mechanisms of action and downstream effects in response to different Nrf2-inducing agents in specific cells, tissues, and diseases, will be critical for effective clinical use.Traumatic brain injury (TBI) poses a major health challenge, with tens of millions of new cases reported globally every year. Brain damage resulting from TBI can vary significantly due to factors including injury severity, injury mechanism and exposure to repeated injury events. Therefore, there is need for robust blood biomarkers. Serum from Sprague Dawley rats was collected at several timepoints within 24 h of mild single or repeat closed head impacts. Serum samples were analyzed via ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in positive and negative ion modes. Known lipid species were identified through matching to in-house tandem MS databases. Lipid biomarkers have a unique potential to serve as objective molecular measures of injury response as they may be liberated to circulation more readily than larger protein markers. Machine learning and feature selection approaches were used to construct lipid panels capable of distinguishing serum from injured and uninjured rats. The best multivariate lipid panels had over 90% cross-validated sensitivity, selectivity, and accuracy.