12/02/2024


Gene Ontology (GO) analysis successfully annotated 90,485 pomegranate unigenes, of which 68,464 were assigned to biological, 78,107 unigenes molecular function and 44,414 to cellular components. Significantly enriched GO terms in DEGs were related to oxidations reduction biological process, protein binding and oxidoreductase activity. This transcriptome data on pomegranate could help in understanding resistance and susceptibility nature of cultivars and further detailed fine mapping and functional validation of identified candidate gene would provide scope for resistance breeding programme in pomegranate.In the present study, four Lactobacillus strains from the cheese were analyzed for its probiotic potential against enteropathogenic bacteria. The probiotic properties of the selected strains were also analyzed and the selected bacterial strains showed high tolerance in bile salts and organic acid. The strain L. plantarum LP049 showed maximum survival rate (92 ± 4.2% and 93.3 ± 2%) after 3 h of treatment at 0.25% (w/v) bile salts and 0.25% (w/v) organic acid concentrations. The ability of the Lactobacillus strains to adhere to human epithelial cells (HT-29 cell lines) was evaluated and L. https://www.selleckchem.com/products/Pomalidomide(CC-4047).html plantarum LP049 showed maximum adhesion property (19.2 ± 1.1%) than other tested strains. The Lactobacillus strains produced lactic acid at various concentrations. Compared with other strains, maximum level of lactic acid (3.1 g/L), hydrogen peroxide (4.31 mM) and bacteriocin (31 AU/mg) was detected in LB049. The inhibitory activity of culture supernatant against various bacterial pathogens was observed. The zone of inhibition ranged between 6 ± 2 mm and 23 ± 2 mm. The cell free extract showed activity against, Escherichia coli (ATCC 10536), Salmonella enteritidis (ATCC 13076), Shigella flexneri (ATCC 29903), and Enterococcus faecium (ATCC 8459). Consequently, L. plantarum LP049 may be considered as a potential candidate for the production of novel bioactive metabolites for therapeutic and bio-protective applications.Amylases take part with vital role in industries such as food, fermentation; starch processing, textile and paper etc. Increasing amylases demand, high nutrient expenditure and environmental pollution have forced to utilize agro-industrial residues as a low-cost feedstock for enzyme production. In present study, three soil samples were collected from agro-industrial waste dumping areas in District Faisalabad. Ten thermophilic bacterial isolates were separated at 55 °C on the basis of colonial morphology, three isolates (F6, F11, F17) showed prominent zone of clearance applying iodine test on starch agar plates. Bacterial isolate F-11 showed highest amylase activity with DNS method and molecularly identified through 16S RNA sequencing as Bacillus sp. with Accession number MH917294. Four unconventional food wastes (banana, lemon, mango and potato) pretreated with 0.8% sulphuric acid concentrations taking 1000 g/L weight released the highest sugars contents and phenolic components. Maximum amylase activity i.e. 29.23 mg/ml was achieved in mango waste at, 40 °C, with pH 6.0 and 0.17% nitrogenous source adding 8% inoculum size (2 days old) using Response Surface Methodology (RSM) for optimization. Crude amylase confirmed its efficiency in starch hydrolysis that suggested it as potential candidate for application in starch industries.In spite of availability of several plastomes representing different tribes of Plantaginaceae, sparse attempts have been made to understand the plastome structure, evolution, and phylogenomics. In the present study, we have made an effort to understand the gene content and plastome evolution in the family Plantaginaceae using the newly generated plastome sequence of Veronica ovata subsp. kiusiana, a taxon native to SE Asia. In the first-ever attempt, plastomes of seven out of 10 tribes of Plantaginaceae have been compared to understand the evolution across the tribes of Plantaginaceae. The size of the plastome of V. ovata subsp. kiusiana is 152,249 bp, showing a typical quadripartite structure containing LSC, SSC, and two IRs with the sizes of 83,187, 17,704, and 25,679 respectively. The plastome comparison revealed the unique deletions in ycf2 and ndhF genes of members of different tribes, and also revealed high nucleotide variable hotspots. The study also revealed six highly variable genes and intergenic spacer viz. rps16, rps15-ycf1, ccsA-ndhD, ndhC-trnV, petN-psbM, and ycf1-trnN as potential DNA barcodes for the genus Veronica. The phylogenomic study revealed the sister relationship between V. ovata subsp. kiusiana and V. persica and also suggested the tentative placement of seven tribes in the family Plantaginaceae.New Nucleosides, analogues derived from 1, 3, 4-oxadiazole, arylidene analogues and α-aminophosphonate were prepared. Infrared (IR), elemental analysis and 1HNMR elucidated nucleosides; arylidines and phosphonate derivatives. The prepared derivatives were purified and allowed to test against bacteria strains. Phosphonate derivative 12a showed the higher antibacterial against E. coli with inhibition zone 35 mm, P. aeruginosa with inhibition zone 30 and S. aureus with inhibition zone 22 while compounds 4, 6d, 9a, 9c and 12c showed moderate to weak activity against these bacteria species with inhibition zones ranged from 12 mm to 24 mm. The molecular docking studies was applied on compound 12a, which showed the binding at the active DNA Gyrase.Antioxidants are one of the effective treatment lines in managing type 2 diabetes (typ2diab) and its complications. Nanoformulations could help in ameliorating the oral bioavailability and biocompatibility properties. Ellagic acid (Ella) is a natural antioxidant compound commonly present in fruits. This study examined the effect Ella nanoparticles (Ella NPs) alone and combined with metformin, the standard antidiabetic drug, on controlling blood glucose in typ2diab. Forty-eight adult Sprague-Dawley rats were used in this study. Except for the control group that was fed a regular pellet diet, all animals were fed a high-fat diet (HFD) for 9 weeks. For the last 4 weeks, rats were injected with streptozotocin (35 mg/kg). Then the rats were randomized into 8 groups control, HFD, diabetic, Ella, Ella + metformin, Ella NPs, and Ella NPs + metformin. Data showed that Ella NPs improved blood glucose levels and the body weights of diabetic rats throughout all the weeks of the experiment whereas effects of the regular Ella were limited to the last two weeks of the treatment.