10/05/2024


Stroke survivors scored significantly higher on the total score of the DAS and all subscales, compared with controls. There were however no significant differences on depression and anxiety scores between the two groups. Our results suggest the DAS is a reliable and valid screening tool to detect and characterise PSAp.Rapid and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dead bodies is essential to prevent infection among those working with dead bodies. This study focused on the Smart Amplification (SmartAmp) method, which has a short examination time (approximately an hour), is simple to perform, and demonstrates high specificity and sensitivity. This method has already been used for clinical specimens; however, its effectiveness in dead bodies has not been reported. This study examined the SmartAmp method using 11 autopsies or postmortem needle biopsies performed from January to May, 2021 (of these, five cases tested positive for SARS-CoV-2 by quantitative real-time polymerase chain reaction (qRT-PCR) and six cases tested negative). Swab samples were collected from the nasopharynx, oropharynx, or anus and the SmartAmp and qRT-PCR results were compared. For the nasopharynx and oropharynx samples, the same results were obtained for both methods in all cases; however, for the anal swabs, there was one case that was positive according to qRT-PCR but negative according to the SmartAmp method. The SmartAmp method may therefore be less sensitive than qRT-PCR and results may differ in specimens with a low viral load, such as anal swabs. However, in the nasopharynx and oropharynx specimens, which are normally used for testing, the results were the same using each method, suggesting that the SmartAmp method is useful in dead bodies. In the future, the SmartAmp method may be applied not only during autopsies, but also in various situations where dead bodies are handled.Chemical and staining methods, immunochromatography, spectroscopy, RNA expression or methylation patterns, do not allow to determine the nature of the biological material with certainty. However, to our knowledge, there are few forensic scientists that assess the value of such test results using a probabilistic approach. This is surprising as it would allow account for false positives and false negatives and avoid misleading conclusions. In this paper, we developed three Bayesian Networks (BNs) to assess the presence of blood, saliva and sperm in the recovered material and combine potentially contradictory observations. The approach was successfully tested using 188 traces from proficiency tests. We have implemented an online user-friendly application (https//forensic-genetic.shinyapps.io/BodyFluidsApp/) that allows forensic scientists to assess the value of their results without having to build Bayesian Networks themselves. They can also input their own data, use the application to identify a potential lack of knowledge and report their conclusions regarding the presence of sperm, blood or/and saliva considering uncertainty.Metal-organic frameworks (MOFs) are prospective photocatalysts for removing pollutants. However, the large size of MOFs results in unsatisfactory photocatalytic performance, thus restricting their further usage. Herein, ultrasmall Ti MOF (NH2-MIL-125(Ti)) nanodots (diameter less then 10 nm) were prepared on carbon fiber (CF) (diameter ∼7 μm) based MoS2 (thickness ∼20 nm, length ∼200 nm) via a facile method and used as an efficient and reusable photocatalyst. The weaved CF/MoS2/NH2-MIL-125(Ti) cloth (0.15 g, 4 × 4 cm2) shows good reusability with an easy reusing process. Compared with large size NH2-MIL-125(Ti) based sample, our well-prepared NH2-MIL-125(Ti) nanodots based sample shows the improved surface area (290.1 m2 g-1) and it can generate more reactive oxygen species (ROS), which enhance removal performance (81.1% levofloxacin (LVFX), 67.9% acid orange 7 (AO7), 94.3% methylene blue (MB) and 100% Cr(Ⅵ)) in 120 min. Additionally, the recycling test for 4 cycles indicates high stability. This work highlights the function of easy-recyclable NH2-MIL-125(Ti) nanodots-based heterojunctions in wastewater purification.Glycerol is an important quality indicator for foodstuffs. There is an increasing request for one more accurate, reliable, and convenient detection of the glycerol concentrations. Terahertz radiation is highly sensitive to the low-frequency intermolecular interactions between the glycerol and waters. Considering the enhancement property of localized field from the metamaterials, terahertz spectroscopy has been utilized for the determination of glycerol content with metamaterial-based biosensor, where the interaction between the analyte and the terahertz wave can be greatly increased. But the quantitative sensing performance was poor due to the sensitivity limitation of single-mode resonance of metamaterial and the lack of appropriate modeling methods. We propose the optimized structural design with internal coupling and multiple resonances. The induced remarkable changes in the lineshape of different transmitted dip regions imply that our metastructure biosensor is of high sensitivity to the change of surrounding environment on the surface dielectric constant, which has been also verified by coupled Lorentz oscillator theory. https://www.selleckchem.com/products/esi-09.html Furthermore, the optimal partial least squares regression model with variables of spectral lineshape for the first dip region covering the frequency range of 0.45-0.85 THz was established. It shows more accurate and reliable predictions of glycerol concentrations with residual predictive deviation value of 6.095. Metamaterial-based terahertz spectroscopy combined with statistical modeling with lineshape features can provide one new strategy for quantitative sensing. It has great potential for the improvement of determination of analyte concentrations in the practical applications of food, pharmaceutical or cosmetic area.Keteling capsules (KCs), as a kind of Traditional Chinese Medicine (TCM), have been widely used in curing cough and relieving asthma. However, the complicated compositions make it challenging to evaluate their quality consistency by common methods. Herein, we explored comprehensive and efficient strategies by combining the multiple techniques to monitor and assess the characteristics of KCs. We employed the fingerprints and corresponding quantum fingerprints by fourier transform infrared spectroscopy (FT-IR), ultraviolet (UV), and differential scanning calorimetry (DSC). The antioxidant activity profiles were also studied combined with the result of three-dimensional quantum fingerprints and showed a good correlation with the internal structure and physical-chemical state. Furthermore, the 17 samples were separated and identified simultaneously by HPLC quantitative fingerprint, of which four active ingredients (chlorogenic acid, p-coumaric acid, vitexin and isovitexin) were quantitatively determined. The 17 samples were successfully classified into different grades by the systematically quantified fingerprint method (SQFM) and the quality of the samples was integrated according to the mean algorithm. The mean algorithm fusion of different evaluation techniques was compared to reveal the relationship between them, which indicated the effective improvement in accuracy and integrality. The combination of multiple analytical techniques developed in this study would effectively improve the existing single analytical methods and provide new strategy for drug quality consistency control.In order to realize early fire detection and location, a mid-infrared carbon monoxide (CO) and carbon dioxide (CO2) dual-gas sensor system was developed, which mainly includes a gas pretreatment module, a CO2 sensor module, a CO sensor module, and a laptop monitoring platform. CO2 and CO absorption lines located at 4.26 μm and 4.66 μm, respectively, were selected to ensure good selectivity of the sensor system. A series of experiments were carried out to evaluate the sensor performance. The 10-90% response time of the CO and CO2 sensor modules was measured to be ∼ 30 s at a flow rate of 1 L/min, and the limits of detection (LoD) of CO2 and CO were assessed to be 5.66 parts per million by volume (ppmv) and 0.94 ppmv, respectively, when the averaging time was 0.25 s. According to the correlation between CO2 and CO concentration in the early fire stage, a method of early fire detection was studied and proposed using the normalized concentration ratio between CO and CO2 (C(CO)/C(CO2)) as the key alarm parameter. Based on gas turbulent diffusion (GTD) model combined with particle swarm optimization (PSO) algorithm, a mobile early fire location method was presented. Correlative experiment results verified that the reported sensor system has a good performance for early fire detection and location.The fluorescent organic nanoparticles (FONs)-based sensor has been attracting great attention in recent years. There are still big challenges in the preparation and application of FONs-based sensor. In this study, a FONs-based sensor was designed and developed through facile hydrothermal process using 3-perylenecarboxaldehyde (PlCA) as the fluorophore and L-methionine (Met) as the recognition site for mercury ions. According to the experimental results, the fluorescence intensity of the as-prepared PlCA-M would decrease when adding Hg2+ and the mechanism was extrapolated to be photoinduced electron transfer inducing by specific coordination interaction. The acquired PlCA-M-based sensor was used to monitor Hg2+ in several real samples (environmental water, tea, and apple) with the limit of detection being 60 nM. Remarkably, a visual detection device based on FONs, SDS-PAAG (sodium dodecyl sulfate polyacrylamide gel) @PlCA-M was firstly constructed and successfully used to Hg2+ semi-quantitation by naked eyes. In addition, the acquired FONs was applied into imaging tool for security information detection and identified as solid-state luminescent material for the first time.The three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrate for trace molecule detection has recently attracted considerable interest; however, these substrates generally either show poor sensitivity or require a complex preparation process. In this work, we have fabricated a 3D ZnO/Ag substrate using porous zeolite imidazole frameworks (ZIF-8) derived ZnO nanoparticles (NPs) followed by evaporation-induced self-assembly of Ag NPs over it, which can detect multiple environmental pollutants by a facile and cost-effective method. This 3D porous substrate showed an ultra-sensitivity for detecting various types of molecules, e.g., rhodamine 6G (R6G), crystal violet (CV), tetracycline, and thiram, simultaneously suggesting its generality. Notably, the lowest detectable concentration (LDC) attained for R6G is 10-13 M, and the enhancement factor (EF) reaches up to 1.8 × 108. The most important reason for ultra-sensitivity is that ZnO derived from ZIF-8 has a hierarchical porous structure and large surface area to provide more "hot spots" and absorb more probe molecules. Consequently, the ZnO/Ag nanostructures show excellent photocatalytic performance. The detected probe molecules could be completely degraded in situ within a short UV exposure time ( less then 30 min), thereby enabling outstanding reusability of this substrate. Finite-different time-domain (FDTD) simulations were used to understand the underlying mechanism of the substrate by calculating electric fields and hot spot distributions. The simulations suggested that the widespread hot spots structures on the substrate are the main reason for its SERS ultra-sensitivity.