11/30/2024


The best yield for nitroaldol production was obtained for copper(II) complexes of PrHSS and BuHSS, although their metal binding ability is moderate compared to that of the cyclohexyl counterparts. However, these complexes possess larger spin density on the nitrogen nuclei than that for the other cases, which alters their catalytic activity.The effect of extracts from four types of tea made from Camelia sinensis (green, white, black, and oolong) on in vitro amylolysis of gelatinized starch and the underlying mechanisms were studied. Of the four extracts, black tea extract (BTE) gave the strongest inhibition of starch digestion and on α-amylase activity. Fluorescence quenching and surface plasmon resonance (SPR) showed compounds in BTE bound to α-amylase more strongly than those in the green, white, and oolong tea extracts. Individual testing of five phenolic compounds abundant in tea extracts showed that theaflavins had a greater inhibitory effect than catechins on α-amylase. SPR showed that theaflavins had much lower equilibrium dissociation constants and therefore bound more tightly to α-amylase than catechins. We conclude that BTE had a stronger inhibitory effect on in vitro enzymatic starch digestion than the other tea extracts, mainly due to the higher content of theaflavins causing stronger inhibition of α-amylase.The quality of molecular dynamics simulations strongly depends on the accuracy of the underlying force fields (FFs) that determine all intra- and intermolecular interactions of the system. Commonly, transferable FF parameters are determined based on a representative set of small molecules. However, such an approach sacrifices accuracy in favor of generality. In this work, an open-source and automated toolkit named Q-Force is presented, which augments these transferable FFs with molecule-specific bonded parameters and atomic charges that are derived from quantum mechanical (QM) calculations. The molecular fragmentation procedure allows treatment of large molecules (>200 atoms) with a low computational cost. The generated Q-Force FFs can be used at the same computational cost as transferable FFs, but with improved accuracy We demonstrate this for the vibrational properties on a set of small molecules and for the potential energy surface on a complex molecule (186 atoms) with photovoltaic applications. Overall, the accuracy, user-friendliness, and minimal computational overhead of the Q-Force protocol make it widely applicable for atomistic molecular dynamics simulations.The practical application of the metallic lithium anode is suppressed by the highly unstable interface between electrolytes and lithium metal during the process of lithium plating/stripping. A perfect solid electrolyte interphase (SEI) can inhibit detrimental parasitic reactions, thereby improving the cycling performance of the metallic lithium anode. In this work, a high-purity solid lithium difluorobis(oxalato) phosphate (LiDFOP) is synthesized and an outstanding organic-inorganic hybrid SEI is obtained in an ether-based electrolyte for the first time induced by LiDFOP. The preferential reduction of LiDFOP can form an SEI rich in LiF and LixPOyFz species, thereby improving the conductivity and stability of the SEI. In addition, cationic-induced ring-opening polymerization between LiDFOP and 1,3-dioxolane endows the SEI with excellent adaptability to the reiterative volume change of the metallic lithium anode. Therefore, the Li/Cu battery maintains a high coulombic efficiency of 98.37% at a current density of 2 mA/cm2 for 200 cycles, and the Li/Li symmetrical battery shows stable voltage hysteresis over 1000 h even under the condition of 5 mA/cm2. The Li/S battery fabricated employing the electrolyte with LiDFOP shows significant improvement of cycling performance as well. These results manifest that the formation of an organic-inorganic hybrid SEI from LiDFOP can be employed as a new strategy to overcome the problem from the unstable SEI in metallic lithium batteries.Oriented semiconductor nanostructures and thin films exhibit many advantageous properties, such as directional exciton transport, efficient charge transfer and separation, and optical anisotropy, and hence these nanostructures are highly promising for use in optoelectronics and photonics. The controlled growth of these structures can facilitate device integration to improve optoelectronic performance and benefit in-depth fundamental studies of the physical properties of these materials. Halide perovskites have emerged as a new family of promising and cost-effective semiconductor materials for next-generation high-power conversion efficiency photovoltaics and for versatile high-performance optoelectronics, such as light-emitting diodes, lasers, photodetectors, and high-energy radiation imaging and detectors. In this Review, we summarize the advances in the fabrication of halide perovskite nanostructures and thin films with controlled dimensionality and crystallographic orientation, along with their applications and performance characteristics in optoelectronics. https://www.selleckchem.com/products/SB-743921.html We examine the growth methods, mechanisms, and fabrication strategies for several technologically relevant structures, including nanowires, nanoplates, nanostructure arrays, single-crystal thin films, and highly oriented thin films. We highlight and discuss the advantageous photophysical properties and remarkable performance characteristics of oriented nanostructures and thin films for optoelectronics. Finally, we survey the remaining challenges and provide a perspective regarding the opportunities for further progress in this field.The development of modern electronics has raised great demand for multifunctional materials to protect electronic instruments against electromagnetic interference (EMI) radiation and ice accretion in cold weather. However, it is still a great challenge to prepare high-performance multifunctional films with excellent flexibilty, mechanical strength, and durability. Here, we propose a layer-by-layer assembly of cellulose nanofiber (CNF)/Ti3C2Tx nanocomposites (TM) on a bacterial cellulose (BC) substrate via repeated spray coating. CNFs are hybridized with Ti3C2Tx nanoflakes to improve the mechanical properties of the functional coating layer and its adhesion with the BC substrate. The densely packed hierarchical structure and strong interfacial interactions endows the TM/BC films with good flexibility, ultrahigh mechanical strength (>250 MPa), and desirable toughness (>20 MJ cm-3). Furthermore, benefiting from the densely packed hierarchical structure, the resultant TM/BC films present outstanding EMI shielding effictiveness of 60 dB and efficient electro-/photothermal heating performance.