10/13/2024


In situ efficacy trials were conducted on detached Gala apples treated preventively and curatively with the aforementioned fungicides. After 6 months of storage at 1°C, FDL and DIF provided full control followed by TBZ and PYRI, whereas the other preharvest fungicides provided fair or low efficacies. Findings of this study shed light on pathogenicity of this emerging pathogen and provide necessary knowledge for effective management of Phacidium rot.Stressful events are often vividly remembered. Although generally adaptive to survival, this emotional-memory enhancement may contribute to stress-related disorders. We tested here whether the enhanced memory for stressful events is due to the expectancy violation evoked by these events. Ninety-four men and women underwent a stressful or control episode. Critically, to manipulate the degree of expectancy violation, we gave participants either detailed or minimal information about the stressor. Although the subjective and hormonal stress responses were comparable in informed and uninformed participants, prior information about the stressor abolished the memory advantage for core features of the stressful event, tested 7 days later. Using functional near-infrared spectroscopy, we further linked the expectancy violation and memory formation under stress to the inferior temporal cortex. These data are the first to show that detailed information about an upcoming stressor and, by implication, a reduced expectancy violation attenuates the memory for stressful events.Cytokeratin (CK) 18 is an intermediate filament protein that plays a major functional role in the integrity and mechanical stability of cells. Since both CK8 and CK18 are major components of simple epithelia, in the context of tumors, they are expressed in most carcinomas, and have been studied as diagnostic and prognostic markers in tumor pathology. https://www.selleckchem.com/products/molidustat-(bay85-3934).html CK18 is also cleaved by some caspases during apoptosis. Three-dimensional (3D)-cultured cancer cells are useful for cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumors. In this study, we produced rat monoclonal antibodies (mAbs) through immunization of the lysate from 3D-cultured DLD-1 cells to elucidate a characteristic feature of a tumor, and our results showed that mAb 2H7 recognized human CK18. Furthermore, we indicated that mAb 2H7 was useful for immunoblotting, immunoprecipitation, and immunofluorescence staining. Therefore, it may be useful as a diagnostic tool for evaluating malignancy.Fusarium temperatum (Scaufl. & Munaut) is one of the most important fungal pathogens that cause ear and stalk rots in maize. In this study, we sequenced genomes of two F. temperatum isolates (KFI615 and KFI660) isolated from corn ears in Poland. A total of 110.3 and 116.3 million 100-nucleotide paired-end clean reads were obtained for KFI615 and KFI660, which were assembled into 20 and 18 scaffolds with an estimated genome size of 45.21 and 45.00 Mb, respectively. These genome sequences provide important resources for understanding pathogenicity and biology of the pathogens within the Fusarium fujikuroi complex.[Formula see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.AbstractSpite is the most surprising prediction of inclusive fitness theory because it suggests that a gene can be favored by natural selection despite causing harm to both the individuals that carry it and those around them. A gene for spite can only be favored because of negative relatedness, which means that the actor that carries the gene is less likely to share the gene for spite with the surrounding recipients than the random expectation. While positive relatedness can be simply reduced to the intuitive concept of kinship, negative relatedness is deeply counterintuitive. Here I clarify that negative relatedness is frequency dependent, and I identify a hidden assumption in its widely used formula. Accordingly, while the well-studied "lighter" side of inclusive fitness (with helping behaviors and positive relatedness) is dominated by traits that are favored under kin selection, I predict that the understudied "darker" side of inclusive fitness (with harming behaviors and negative relatedness) is dominated by traits that are favored under greenbeard/kind selection-and I discuss the existing evidence that tentatively supports this hypothesis.AbstractWhen populations evolve adaptive reaction norms in response to novel environments, it can occur through a process termed genetic accommodation. Under this model, the initial response to the environment is widely variable between genotypes as a result of cryptic genetic variation, which is then refined by selection to a single adaptive response. Here, I empirically test these predictions from genetic accommodation by measuring reaction norms in individual genotypes and across several time points. I compare two species of Drosophila that differ in their adaptation to ethanol (D. melanogaster and D. simulans). Both species are human commensals with a recent cosmopolitan expansion, but only D. melanogaster is adapted to ethanol exposure. Using gene expression as a phenotype and an approach that combines information about expression and alternative splicing, I find that D. simulans exhibits cryptic genetic variation in the response to ethanol, while D. melanogaster has almost no genotype-specific variation in reaction norm. This is evidence for adaptation to ethanol through genetic accommodation, suggesting that the evolution of phenotypic plasticity could be an important contributor to the ability to exploit novel resources.AbstractSome species show high rates of reproductive failure, which is puzzling because natural selection works against such failure in every generation. Hatching failure is common in both captive and wild zebra finches (Taeniopygia guttata), yet little is known about its proximate causes. Here we analyze data on reproductive performance (the fate of >23,000 eggs) based on up to 14 years of breeding of four captive zebra finch populations. We find that virtually all aspects of reproductive performance are negatively affected by inbreeding (mean r = -0.117 ); by an early-starting, age-related decline (mean r = -0.132 ); and by poor early-life nutrition (mean r = -0.058 ). However, these effects together explain only about 3% of the variance in infertility, offspring mortality, fecundity, and fitness. In contrast, individual repeatability of different fitness components varied between 15% and 50%. As expected, we found relatively low heritability in fitness components (median 7% of phenotypic variation and 29% of individually repeatable variation). Yet some of the heritable variation in fitness appears to be maintained by antagonistic pleiotropy (negative genetic correlations) between male fitness traits and female and offspring fitness traits. The large amount of unexplained variation suggests a potentially important role of local dominance and epistasis, including the possibility of segregating genetic incompatibilities.AbstractThe mimicry of one species by another provides one of the most celebrated examples of evolution by natural selection. Edible Batesian mimics deceive predators into believing they may be defended, whereas defended Müllerian mimics have evolved a shared warning signal, more rapidly educating predators to avoid them. However, it may benefit hungry predators to attack defended prey, while the benefits of learning about unfamiliar prey depends on the future value of this information. Previous energetic state-dependent models of predator foraging behavior have assumed complete knowledge, while informational state-dependent models have assumed fixed levels of hunger. Here, we identify the optimal decision rules of predators accounting for both energetic and informational states. We show that the nature of mimicry is qualitatively and quantitatively affected by both sources of state dependence. Associative learning weakens the extent of parasitic mimicry by edible prey because naive predators often attack defended models. More importantly, mimicry among equally highly defended prey may be parasitic or mutualistic depending on the ecological context (e.g., the source of mimics and the abundance of alternative prey). Finally, mimicry by prey with intermediate defenses corresponds to Batesian or Müllerian mimicry depending on whether the mimic is profitable to attack by hungry predators, but it is not a special case of mimicry.AbstractGenome size (C-value) can affect organismal traits across levels of biological organization from tissue complexity to metabolism. Neotropical salamanders show wide variation in genome and body sizes, including several clades with miniature species. Because miniaturization imposes strong constraints on morphology and development and because genome size is strongly correlated with cell size, we hypothesize that body size has played an important role in the evolution of genome size in bolitoglossine salamanders. If this hypothesis is correct, then genome size and body size should be correlated in this group. Using Feulgen image analysis densitometry, we estimated genome sizes for 60 species of Neotropical salamanders. We also estimated the "biological size" of species by comparing genome size and physical body sizes in a phylogenetic context. We found a significant correlation between C-value and physical body size using optimal regression with an Ornstein-Uhlenbeck model and report the smallest salamander genome found to date. Our index of biological size showed that some salamanders with large physical body size have smaller biological body size than some miniature species and that several clades demonstrate patterns of increased or decreased biological size compared with their physical size. Our results suggest a causal relationship between physical body size and genome size and show the importance of considering the impact of both on the biological size of organisms. Indeed, biological size may be a more appropriate measure than physical size when considering phenotypic consequences of genome size evolution in many groups.AbstractThe rapid increase in "big data" during the postgenomic era makes it crucial to appropriately measure the level of social complexity in comparative studies. We argue that commonly used qualitative classifications lump together species showing a broad range of social complexity and falsely imply that social evolution always progresses along a single linear stepwise trajectory that can be deduced from comparing extant species. To illustrate this point, we compared widely used social complexity measures in "primitively eusocial" bumble bees with "advanced eusocial" stingless bees, honey bees, and attine ants. We find that a single species can have both higher and lower levels of complexity compared with other taxa, depending on the social trait measured. We propose that measuring the complexity of individual social traits switches focus from semantic discussions and offers several directions for progress. First, quantitative social traits can be correlated with molecular, developmental, and physiological processes within and across lineages of social animals.