09/29/2024


Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.Nucleocytoplasmic transport (NCT) decline occurs with aging and neurodegeneration. Here, we investigated the NCT pathway in models of amyotrophic lateral sclerosis-fused in sarcoma (ALS-FUS). Expression of ALS-FUS led to a reduction in NCT and nucleoporin (Nup) density within the nuclear membrane of human neurons. FUS and Nups were found to interact independently of RNA in cells and to alter the phase-separation properties of each other in vitro. FUS-Nup interactions were not localized to nuclear pores, but were enriched in the nucleus of control neurons versus the cytoplasm of mutant neurons. Our data indicate that the effect of ALS-linked mutations on the cytoplasmic mislocalization of FUS, rather than on the physiochemical properties of the protein itself, underlie our reported NCT defects. An aberrant interaction between mutant FUS and Nups is underscored by studies in Drosophila, whereby reduced Nup expression rescued multiple toxic FUS-induced phenotypes, including abnormal nuclear membrane morphology in neurons.We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance.Understanding cellular organization demands the best possible spatial resolution in all three dimensions. In fluorescence microscopy, this is achieved by 4Pi nanoscopy methods that combine the concepts of using two opposing objectives for optimal diffraction-limited 3D resolution with switching fluorescent molecules between bright and dark states to break the diffraction limit. However, optical aberrations have limited these nanoscopes to thin samples and prevented their application in thick specimens. Here we have developed an improved iso-stimulated emission depletion nanoscope, which uses an advanced adaptive optics strategy to achieve sub-50-nm isotropic resolution of structures such as neuronal synapses and ring canals previously inaccessible in tissue. The adaptive optics scheme presented in this work is generally applicable to any microscope with a similar beam path geometry involving two opposing objectives to optimize resolution when imaging deep in aberrating specimens.Cell atlas projects and high-throughput perturbation screens require single-cell sequencing at a scale that is challenging with current technology. To enable cost-effective single-cell sequencing for millions of individual cells, we developed 'single-cell combinatorial fluidic indexing' (scifi). The scifi-RNA-seq assay combines one-step combinatorial preindexing of entire transcriptomes inside permeabilized cells with subsequent single-cell RNA-seq using microfluidics. Preindexing allows us to load several cells per droplet and computationally demultiplex their individual expression profiles. Thereby, scifi-RNA-seq massively increases the throughput of droplet-based single-cell RNA-seq, and provides a straightforward way of multiplexing thousands of samples in a single experiment. Compared with multiround combinatorial indexing, scifi-RNA-seq provides an easy and efficient workflow. Compared to cell hashing methods, which flag and discard droplets containing more than one cell, scifi-RNA-seq resolves and retains individual transcriptomes from overloaded droplets. We benchmarked scifi-RNA-seq on various human and mouse cell lines, validated it for primary human T cells and applied it in a highly multiplexed CRISPR screen with single-cell transcriptome readout of T cell receptor activation.Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.The mammalian circadian system consists of a central clock in the brain that synchronizes clocks in the peripheral tissues. Although the hierarchy between central and peripheral clocks is established, little is known regarding the specificity and functional organization of peripheral clocks. Here, we employ altered feeding paradigms in conjunction with liver-clock mutant mice to map disparities and interactions between peripheral rhythms. We find that peripheral clocks largely differ in their responses to feeding time. Disruption of the liver-clock, despite its prominent role in nutrient processing, does not affect the rhythmicity of clocks in other peripheral tissues. Yet, unexpectedly, liver-clock disruption strongly modulates the transcriptional rhythmicity of peripheral tissues, primarily on daytime feeding. https://www.selleckchem.com/ Concomitantly, liver-clock mutant mice exhibit impaired glucose and lipid homeostasis, which are aggravated by daytime feeding. Overall, our findings suggest that, upon nutrient challenge, the liver-clock buffers the effect of feeding-related signals on rhythmicity of peripheral tissues, irrespective of their clocks.For 50 years, ecologists have examined how the number of interactions (links) scales with the number of species in ecological networks. Here, we show that the way the number of links varies when species are sequentially removed from a community is fully defined by a single parameter identifiable from empirical data. We mathematically demonstrate that this parameter is network-specific and connects local stability and robustness, establishing a formal connection between community structure and two prime stability concepts. Importantly, this connection highlights a local stability-robustness trade-off, which is stronger in mutualistic than in trophic networks. Analysis of 435 empirical networks confirmed these results. We finally show how our network-specific approach relates to the classical across-network approach found in literature. Taken together, our results elucidate one of the intricate relationships between network structure and stability in community networks.Solid electrolytes hold great promise for enabling the use of Li metal anodes. The main problem is that during cycling, Li can infiltrate along grain boundaries and cause short circuits, resulting in potentially catastrophic battery failure. At present, this phenomenon is not well understood. Here, through electron microscopy measurements on a representative system, Li7La3Zr2O12, we discover that Li infiltration in solid oxide electrolytes is strongly associated with local electronic band structure. About half of the Li7La3Zr2O12 grain boundaries were found to have a reduced bandgap, around 1-3 eV, making them potential channels for leakage current. Instead of combining with electrons at the cathode, Li+ ions are hence prematurely reduced by electrons at grain boundaries, forming local Li filaments. The eventual interconnection of these filaments results in a short circuit. Our discovery reveals that the grain-boundary electronic conductivity must be a primary concern for optimization in future solid-state battery design.Single-atom catalysts have shown promising performance in various catalytic reactions. Catalytic metal sites supported on oxides or carbonaceous materials are usually strongly coordinated by oxygen or heteroatoms, which naturally affects their electronic environment and consequently their catalytic activity. Here, we reveal the stabilization of single-atom catalysts on tungsten carbides without the aid of heteroatom coordination for efficient catalysis of the oxygen evolution reaction (OER). Benefiting from the unique structure of tungsten carbides, the atomic FeNi catalytic sites are weakly bonded with the surface W and C atoms. The reported catalyst shows a low overpotential of 237 mV at 10 mA cm-2, which can even be lowered to 211 mV when the FeNi content is increased, a high turnover frequency value of 4.96 s-1 (η = 300 mV) and good stability (1,000 h). Density functional theory calculations show that either metallic Fe/Ni atoms or (hydro)oxide FeNi species are responsible for the high OER activity. We suggest that the application of inexpensive and durable WCx supports opens up a promising pathway to develop further single-atom catalysts for electrochemical catalytic reactions.