In this Perspective, we synthesize some of these recent advances to describe the hallmarks of cancer cell dormancy and how the dormant cancer cell life cycle offers opportunities to target not only the cancer but also its environment to achieve a durable cure for seemingly incurable cancers.The mammalian gut microbiome can potentially impact host health and disease state. It is known that the mouse-genome, eating-behavior, and exercise-status promotes higher taxonomic rank-level alterations (e.g. family to phyla-level) of the gut microbiota. Here, host genotype or activity status was investigated to determine if selection of individual bacterial species or strains could be discerned within the murine digestive system. For this study, the fecal bacterial community of adenylyl cyclase 5 knock-out (AC5KO, n = 7) mice or their wild-type (WT, n = 10) littermates under exercise or sedentary conditions were profiled by sequencing rRNA operons. AC5KO mice were chosen since this genotype displays enhanced longevity/exercise capacity and protects against cardiovascular/metabolic disease. Profiling of rRNA operons using the Oxford MinION yielded 65,706 2-D sequences (after size selection of 3.7-5.7 kb) which were screened against an NCBI 16S rRNA gene database. These sequences were binned into 1,566 different best BLAST hits (BBHs) and counted for each mouse sample. Non-metric multidimensional scaling (NMDS) of the gut microbial community demonstrated clustering by physical activity (p = 0.001) but not by host genotype. Additionally, sequence similarity and phylogenetic analysis demonstrated that different bacterial species (closely related to Muribaculum intestinale and Parasutterella excrementihominis) inhabit AC5KO or WT mice depending on activity status. Other bacterial species of the gut microbiota did not follow such patterning (e.g. Turicibacter sanguinis and Turicimonas muris). Our results support the need of improved taxonomic resolution for better characterization of bacterial communities to deepen our understanding of the role of the gut microbiome on host health.We introduce neutral excitation density-functional theory (XDFT), a computationally light, generally applicable, first-principles technique for calculating neutral electronic excitations. The concept is to generalise constrained density functional theory to free it from any assumptions about the spatial confinement of electrons and holes, but to maintain all the advantages of a variational method. The task of calculating the lowest excited state of a given symmetry is thereby simplified to one of performing a simple, low-cost sequence of coupled DFT calculations. We demonstrate the efficacy of the method by calculating the lowest single-particle singlet and triplet excitation energies in the well-known Thiel molecular test set, with results which are in good agreement with linear-response time-dependent density functional theory (LR-TDDFT). Furthermore, we show that XDFT can successfully capture two-electron excitations, in principle, offering a flexible approach to target specific effects beyond state-of-the-art adiabatic-kernel LR-TDDFT. Overall the method makes optical gaps and electron-hole binding energies readily accessible at a computational cost and scaling comparable to that of standard density functional theory. Owing to its multiple qualities beneficial to high-throughput studies where the optical gap is of particular interest; namely broad applicability, low computational demand, and ease of implementation and automation, XDFT presents as a viable candidate for research within materials discovery and informatics frameworks.Study design Retrospective analysis of prospectively collected data. Objective Central cord syndrome (CCS) is reported to have better outcomes than other cervical lesions, especially for ambulation and bladder recovery. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html However, a formal comparison between patients with CCS and other incomplete cervical spinal cord injuries (iCSCI) is lacking. Aim of the study is to investigate the neurological and functional outcomes in patients with or without CCS. Setting European Multicenter Study. Methods Data following SCI were derived from the European Multicenter Study about Spinal Cord Injury Database. CCS was diagnosed based on a difference of at least ten points of motor score in favour of the lower extremities. Patients were evaluated at 30 days, 6 months and 1 year from injury. The neurological and functional data were collected at each time point based on the International Standards for Neurological Classification of Spinal Cord injury (ISNSCI) and Spinal Cord Independence Measure (SCIM). Patients were selected with a matching procedure based on lesion severity, neurological level of injury (NLI) and age. Evaluation of the outcomes was performed by means of two-way Anova for repeated measures. Results The matching produced 110 comparable dyads. At all time points, upper extremity motor scores remained lower than lower extremity motor scores in CCS compared with iCSCI. With regard to daily life independence, both cohorts achieved comparable improvements in self-care sub-scores between T0 and T2 (6.6 ± 6.5 in CCS vs 8.2 ± 6.9 in iCSCI, p = 0.15) but this sub-score was significantly lower in CCS compared with iCSCI (3.6 ± 5.2 in CCS vs 7.3 ± 7.0 in iCSCI at T0, 13.7 ± 6.2 vs 16.5 ± 5.7 at T2), while the other sub-scores were comparable. Conclusions In contrast to previous reports, people with CCS have poorer outcomes of self-care ability compared with iCSCI.Female choice is an important driver of sexual selection, but can be costly, particularly when choosy females risk remaining unmated or experience delays to reproduction. Thus, females should reduce choosiness when mate encounter rates are low. We asked whether choosiness is affected by social context, which may provide reliable information about the local availability of mates. This has been demonstrated in the lab, but rarely under natural conditions. We studied western black widow spiders (Latrodectus hesperus) in the field, placing experimental final-instar immature females so they were either 'isolated' or 'clustered' near naturally occurring conspecifics (≥10 m or ≤1 m, respectively, from a microhabitat occupied by at least one other female). Upon maturity, females in both treatments were visited by similar numbers of males, but clustered females were visited by males earlier and in more rapid succession than isolated females, confirming that proximity to conspecifics reduces the risk of remaining unmated.