Previous embryonic fish data have shown caffeine to induce potential teratogenic and long-term neurodevelopmental outcomes through oxidative stress-mediated apoptosis. In this context, antioxidants may have the potential to counteract the caffeine-induced effects. Therefore, the present study aimed to investigate the potential protective role of 24-epibrassinolide (24-EPI), a natural brassinosteroid with proven antioxidant properties, against caffeine-induced teratogenic effects during early zebrafish development. Embryos (~2 h post-fertilization - hpf) were exposed to 0.5 mM caffeine, co-exposed to 24-EPI (0.01, 0.1 and 1 μM) and to 24-EPI alone (1 μM) for 96 h. During exposure, lethal and sublethal developmental parameters were evaluated. At the end of the exposure, biochemical evaluations were made, and 24 h after, different behavioural paradigms were assessed. An increased number of animals showing oedema and malformations were observed after caffeine exposure, while these were reduced after co-exposure to 24-EPI concentration, namely the tail curvature. The results showed oxidative stress and related parameters similar among treatments. Yet, caffeine exposure resulted in locomotor deficits (decreased speed and distance) and disrupted anxiety-like and avoidance responses. The co-exposure to caffeine and to the highest 24-EPI concentrations resulted in less pronounced behavioural deficits. Overall, there was an absence of effects in the embryo/larvae exposed solely to 24-EPI, while caffeine caused developmental and neurotoxic effects. Although further studies are needed, the results showed promising protective effects of the highest 24-EPI concentration tested against the toxicity induced by caffeine in zebrafish.Meat-refusers (vegetarians and vegans) are typically derogated by meat eaters because they threaten meat eaters' moral self-image. In two preregistered experiments (N = 323 and N = 243), we examined the effects of communication style on this 'do-gooder' derogation. For this purpose, we developed a paradigm to create moral threat in participants in an online study. Afterwards, participants read an essay of a meat-refuser that was either static, confident, and result-oriented; or dynamic, uncertain, and process-oriented. Dynamically communicating meat-refusers were found to elicit less moral threat and be evaluated as less arrogant than static targets. Regardless of communication, meat refusers with non-moral motives were also evaluated as less threatening and arrogant than ethical vegetarians and vegans. We propose that dynamic communication can improve relations between meat eaters and meat-refusers and, thereby, may eventually inspire meat eaters to decrease their meat consumption in the future.Inhibitory control training has recently been used as an intervention to aid healthy eating and encourage weight loss. The aim of this pre-registered study was to explore the effects of training on food liking, food consumption and weight loss in a large (n = 366), predominantly healthy-weight sample. Participants received four training sessions within a week, in which they had to inhibit their responses to either energy-dense foods (active group) or non-food images (control group). Subjective food ratings, food consumption frequency and weight were measured pre- and post-training. At two-weeks post-training, the active group reported a greater reduction in liking for energy-dense foods, compared to the control group. Active participants also reported a significantly greater increase in healthy food liking, immediately post-training, relative to the control group. There was no statistically significant difference between groups for the change in consumption of trained foods or for weight loss. These findings are partially consistent with previous research conducted in smaller, more overweight samples. Exploratory analyses suggest that some effects of training may be driven by awareness effects. Methodological differences across findings and avenues for future investigation are discussed.
To determine the effect of diurnal exercise timing on appetite, energy intake and body composition in individuals with overweight or obesity.
Forty sedentary, individuals with overweight or obesity (17 males, 23 females; age 51±13 years; BMI 30.9±4.2kg/m
) were randomly allocated to complete a 12-week supervised multi-modal exercise training program performed either in the morning (amEX) or evening (pmEX). Outcome measures included appetite in response to a standardised test meal, daily energy intake (EI), body weight and body composition. Measures of dietary behaviour were assessed at baseline and post-intervention, along with habitual physical activity, sleep quality and sleep quantity. Significance was set at p≤.05 and Hedge's g effect sizes were calculated.
Regardless of timing, exercise training increased perceived fullness (AUC; g=0.82-1.67; both p<.01), decreased daily EI (g=0.73-0.93; both p<.01) and body-fat (g=0.29-0.32; both p <. 01). The timing of exercise did not change the daily g on appetite and body composition appear trivial compared to the overall benefits of exercise participation.Some Diffusion Tensor Imaging studies have shown a loss of white matter (WM) integrity linked to impaired cognitive function in obese individuals. However, inconsistent WM integrity changes have been reported. https://www.selleckchem.com/products/dibutyryl-camp-bucladesine.html We aimed to identify which WM tracts show consistent changes with obesity. We conducted a systematic search to find studies examining the association between obesity-related measures and Fractional Anisotropy (FA) or Mean Diffusivity. We performed a meta-analysis with FA datasets using Anisotropic Effect Size-Signed Differential Mapping software. The meta-analysis showed that increased obesity measurements were related to reduced FA in the genu of the corpus callosum. We validated our findings using an independent sample from the Human Connectome Project dataset, which supports lower FA in this region in individuals with obesity compared to those with normal weight (p = 0.028). Our findings provide evidence that obesity is associated with reduced WM integrity in the genu of the corpus callosum, a tract linking frontal areas involved in executive function. Future studies are needed on the mechanisms linking obesity with loss of WM integrity.Pregnane X receptor (PXR) plays an important role in xenobiotic metabolism. While ligand binding induces PXR-dependent gene transcription, PXR shows constitutive transcriptional activity in the absence of ligands when expressed in cultured cells. This constitutive activity sometimes hampers investigation of PXR activation by compounds of interest. link2 In this study, we investigated the molecular mechanism of PXR activation. In the reported crystal structures of unliganded PXR, helix 12 (H12), including a coactivator binding motif, was stabilized, while it is destabilized in the unliganded structures of other nuclear receptors, suggesting a role for H12 stabilization in the basal activity of PXR. Since Phe420, located in the loop between H11 and H12, is thought to interact with Leu411 and Ile414 to stabilize H12, we substituted alanine at Phe420 (PXR-F420A) and separately inserted three alanine residues directly after Phe420 (PXR-3A) and investigated their influence on PXR-mediated transcription. Reporter gene assays demonstrated that the mutants showed drastically reduced basal activity and enhanced responses to various ligands, which was further enhanced by coexpression of the coactivator peroxisome proliferator-activated receptor gamma coactivator 1α. Mutations of both Leu411 and Ile414 to alanine also suppressed basal activity. Mammalian two-hybrid assays showed that PXR-F420A and PXR-3A bound to corepressors and coactivators in the absence and presence of ligands, respectively. link3 We conclude that the intramolecular interactions of Phe420 with Leu411 and Ile414 stabilize H12 to recruit coactivators even in the absence of ligands, contributing to the basal transcriptional activity of PXR. We propose that the generated mutants might be useful for PXR ligand screening.Like most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined. Here, we report that individual AMOT PPxY and NEDD4L WW domains interact with the following general affinity hierarchies AMOT PPxY1>PPxY2>PPxY3 and NEDD4L WW3>WW2>WW1∼WW4. The unusually high-affinity of the AMOT PPxY1-NEDD4L WW3 interaction accounts for most of the AMOT-NEDD4L binding and is critical for stimulating HIV-1 release. Comparative structural, binding, and virological analyses reveal that complementary ionic and hydrophobic contacts on both sides of the WW-PPxY core interaction account for the unusually high affinity of the AMOT PPxY1-NEDD4L WW3 interaction. Taken together, our studies reveal how the first AMOT PPxY1 motif binds the third NEDD4L WW domain to stimulate HIV-1 viral envelopment and promote infectivity.Muscle glycogen depletion has been proposed as one of the main causes of fatigue during exercise. However, few studies have addressed the contribution of liver glycogen to exercise performance. Using a low-intensity running protocol, here, we analyzed exercise capacity in mice overexpressing protein targeting to glycogen (PTG) specifically in the liver (PTGOE mice), which show a high concentration of glycogen in this organ. PTGOE mice showed improved exercise capacity, as determined by the distance covered and time ran in an extenuating endurance exercise, compared with control mice. Moreover, fasting decreased exercise capacity in control mice but not in PTGOE mice. After exercise, liver glycogen stores were totally depleted in control mice, but PTGOE mice maintained significant glycogen levels even in fasting conditions. In addition, PTGOE mice displayed an increased hepatic energy state after exercise compared with control mice. Exercise caused a reduction in the blood glucose concentration in control mice that was less pronounced in PTGOE mice. No changes were found in the levels of blood lactate, plasma free fatty acids, or β-hydroxybutyrate. Plasma glucagon was elevated after exercise in control mice, but not in PTGOE mice. Exercise-induced changes in skeletal muscle were similar in both genotypes. These results identify hepatic glycogen as a key regulator of endurance capacity in mice, an effect that may be exerted through the maintenance of blood glucose levels.Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus.