10/14/2024


pharmaceuticals for diagnosis and treatment and collaborations with other scientific fields.
Diffusion-weighted whole-body MRI (DW-MRI) is increasingly used in the management of multiple myeloma (MM) patients, but data regarding the prognostic role of DW-MRI imaging response after treatment are lacking. The Myeloma Response Assessment and Diagnosis System (MY-RADS) imaging recommendations recently proposed the criteria for response assessment category (RAC) with a 5-point scale in order to standardize response assessment after therapy, but this score still needs to be validated.

We investigated the prognostic role of RAC criteria in 64 newly diagnosed MM patients after autologous stem cell transplantation (ASCT), and we combined the results of MY-RADS with those of minimal residual disease (MRD) assessment by multiparametric flow cytometry (MFC).

Superior post-ASCT PFS and OS were observed in patients with complete imaging response (RAC1), with respect to patients with imaging residual disease (RAC≥2) median PFS not reached (NR) versus 26.5 months, p=0.0047, HR 0.28 (95% CI 0.12-0.68); 3-year post-ASCT OS 92% versus 69% for RAC1 versus RAC ≥2, respectively, p=0.047, HR 0.24 (95% CI 0.06-0.99). Combining MRD and imaging improved prediction of outcome, with double-negative and double-positive features defining groups with excellent and dismal PFS, respectively (PFS NR vs. 10.6months); p=0.001, HR 0.07 (95%CI 0.01-0.36).

The present study supports the applicability of MY-RADS recommendations after ASCT; RAC criteria were able to independently stratify patients and to better predict their prognosis and the combined use of DW-MRI with MFC allowed a more precise evaluation of MRD.
The present study supports the applicability of MY-RADS recommendations after ASCT; RAC criteria were able to independently stratify patients and to better predict their prognosis and the combined use of DW-MRI with MFC allowed a more precise evaluation of MRD.This study develops a novel strategy for regenerative therapy of musculoskeletal soft tissue defects using a dual-phase multifunctional injectable gelatin-hydroxyphenyl propionic acid (Gtn-HPA) composite. The dual-phase gel consists of stiff, degradation-resistant, ≈2-mm diameter spherical beads made from 8 wt% Gtn-HPA in a 2 wt% Gtn-HPA matrix. The results of a 3D migration assay show that both the cell number and migration distance in the dual-phase gel system are comparable with the 2 wt% mono-phase Gtn-HPA, but notably significantly higher than for 8 wt% mono-phase Gtn-HPA (into which few cells migrated). The results also show that the dual phase gel system has degradation resistance and a prolonged growth factor release profile comparable with 8 wt% mono-phase Gtn-HPA. In addition, the compressive modulus of the 2 wt% dual-phase gel system incorporating the 8 wt% bead phase is nearly four-fold higher than the 2 wt% mono-phase gel (5.3 ± 0.4 kPa versus 1.5 ± 0.06 kPa). This novel injectable dual-phase Gtn-HPA composite thus combines the advantages of low-concentration Gtn-HPA (cell migration) with high-concentration Gtn-HPA (stiffness, degradation resistance, slower chemical release kinetics) to facilitate effective reparative/regenerative processes in musculoskeletal soft tissue.Sensitive immunoassays are required for troponin, a low-abundance cardiac biomarker in blood. In contrast to conventional (analog) assays that measure the integrated signal of thousands of molecules, digital assays are based on counting individual biomarker molecules. Photon-upconversion nanoparticles (UCNP) are an excellent nanomaterial for labeling and detecting single biomarker molecules because their unique anti-Stokes emission avoids optical interference, and single nanoparticles can be reliably distinguished from the background signal. Here, the effect of the surface architecture and size of UCNP labels on the performance of upconversion-linked immunosorbent assays (ULISA) is critically assessed. The size, brightness, and surface architecture of UCNP labels are more important for measuring low troponin concentrations in human plasma than changing from an analog to a digital detection mode. Both detection modes result approximately in the same assay sensitivity, reaching a limit of detection (LOD) of 10 pg mL-1 in plasma, which is in the range of troponin concentrations found in the blood of healthy individuals.Imaging-guided local therapy is the most effective strategy to treat primary cancers in patients. However, the local therapeutic effect should be further improved under the premise of absence of induction of additional side effects. It would be meaningful to analyze the potential assistance of nuclear imaging to the follow-up treatments. In this study,cancer-targeted copper sulfide nanoparticles with 99m Tc labeling (99m Tc-M-CuS-PEG) are prepared using-cancer cell membranes as a synthesis reactor and applied for the potential single-photon emission computed tomography/photoacoustic imaging-guided and 99m Tc-amplified photothermal therapy of cancer. Owing to the homologous targeting capability of the cancer cell membrane, M-CuS-PEG selectively accumulates in homologous tumor sites. After labeling with 99m Tc, M-CuS-PEG with a high near-infrared light absorbance can realize bimodal imaging-guided photothermal therapy of cancer. https://www.selleckchem.com/products/art558.html Furthermore, the labeled 99m Tc significantly enhances the cell uptake of M-CuS-PEG by inducing G2/M arrest of the cell cycle, further improving the photothermal antitumor effect, which is positively correlated with endocytosis of the photothermal conversion reagent. Therefore, a novel cancer-targeted theranostic nanoplatform is developed and it is revealed that the labeled 99m Tc can not only guide but also amplify the subsequent therapy of cancer, providing a conceptual strategy for cancer theranostics with a high biosafety.Organic-inorganic halide perovskites have demonstrated significant light detection potential, with a performance comparable to that of commercially available photodetectors. In this study, a general design guideline, which is applicable to both inverted and regular structures, is proposed for high-performance perovskite photodiodes through an interfacial built-in electric field (E) for efficient carrier separation and transport. The interfacial E generated at the interface between the active and charge transport layers far from the incident light is critical for effective charge carrier collection. The interfacial E can be modulated by unintentional doping of the perovskite, whose doping type and density can be easily controlled by the post-annealing time and temperature. Employing the proposed design guideline, the inverted and regular perovskite photodiodes exhibit the external quantum efficiency of 83.51% and 76.5% and responsivities of 0.37 and 0.34 A W-1 , respectively. In the self-powered mode, the dark currents reach 7.