In vitro osteogenic differentiation of the cells from the spheroids in the micro-chamber with dual growth factors enhanced alkaline phosphatase and collagen type 1A expression by factors of 126.7 ± 19.6 and 89.7 ± 0.3, respectively, compared with expression in a micro-chamber with no growth factors. In vivo transplantation of the chambers with dual growth factors into mouse calvarial defects resulted in a 77.0 ± 15.9% of regenerated bone area, while the chamber without growth factors and a defect-only group achieved 7.6 ± 3.9% and 5.0 ± 1.9% of regenerated bone areas, respectively. These findings indicate that a spheroid-loaded micro-chamber supplied with dual growth factors can serve as an effective protein-delivery platform that increases stem-cell functioning and bone regeneration.Deep learning (DL) based auto-segmentation has the potential for accurate organ delineation in radiotherapy applications but requires large amounts of clean labeled data to train a robust model. However, annotating medical images is extremely time-consuming and requires clinical expertise, especially for segmentation that demands voxel-wise labels. On the other hand, medical images without annotations are abundant and highly accessible. To alleviate the influence of the limited number of clean labels, we propose a weakly-supervised DL training approach using deformable image registration (DIR)-based annotations, leveraging the abundance of unlabeled data. We generate pseudo-contours by utilizing DIR to propagate atlas contours onto abundant unlabeled images and train a robust DL-based segmentation model. With 10 labeled TCIA dataset and 50 unlabeled CT scans from our institution, our model achieved Dice similarity coefficient of 87.9%, 73.4%, 73.4%, 63.2% and 61.0% on mandible, left & right parotid glands and left & right submandibular glands of TCIA test set and competitive performance on our institutional clinical dataset and a third party (PDDCA) dataset. Experimental results demonstrated the proposed method outperformed traditional multi-atlas DIR methods and fully-supervised limited data training and is promising for DL-based medical image segmentation application with limited annotated data.
In the human body, volatile organic compounds (VOCs) are produced by different tissues then secreted in different body fluids and subsequently excreted. Here we explore a non-invasive method for the detection of liver, prostate and bladder cancers.
We recruited 140 cases. There were 31 hepatocellular carcinomas (HCC), 62 prostate carcinomas, 29 bladder carcinomas and 18 non-cancer cases. Male to female ratio was 51 and mean age was 72 years. Urinary VOCs were detected by applying solid-phase microextraction (SPME) technique.
The sensitivity for detection of HCC with normal alpha fetoprotein (AFP) was 68% (SE 0.06, 95% CI 0.54 to 0.81 and P < 0.005). The VOCs sensitivity in the detection of HCC cases with raised AFP was 83%. (SE 0.05, 95% CI 0.73 to 0.93 and P < 0.0001). The VOCs sensitivity for prostate cancer detection was 70% (SE 0.049, 95% CI 0.60 to 0.79 and P < 0.0002) and sensitivity for bladder cancer detection was 81% (SE 0.052, 95% CI 0.70 to 0.91 and P < 0.0001).
SPME urinary VOCs analysis was able to differentiate between controls and each of hepatocellular, prostate and bladder cancers. This suggests that urinary VOCs are cancer specific and could potentially be used as a diagnostic method.
SPME urinary VOCs analysis was able to differentiate between controls and each of hepatocellular, prostate and bladder cancers. This suggests that urinary VOCs are cancer specific and could potentially be used as a diagnostic method.In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for Magnetic Fluid Hyperthermia applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ~1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn+Co) at%) changes from 33 at% to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. https://www.selleckchem.com/products/anacardic-acid.html Experiments of magnetic fluid hyperthermia of 0.1 wt% of these particles dispersed in water, DMEM (Dulbecco modified Eagles minimal essential medium) and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W/g, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that requiere smaller particle sizes .Fluoroscopy is increasingly used to guide minimally invasive endourological procedures and optimized protocols are needed to minimize radiation exposure while achieving best treatment results. This multi-center study of radiation exposure of patients was conducted by the South-Eastern European Group for Urolithiasis Research (SEGUR), in cooperation with the International Atomic Energy Agency. Seven clinical centers from the SEGUR group collected data for 325 procedures performed within a three-months period, including standard percutaneous nephrolithotomy (PCNL), mini PCNL, retrograde intrarenal surgery (RIRS), semirigid ureterorenoscopy (URS) and flexible URS. Data included air kerma area product (PKA), air kerma at the patient entrance reference point (Ka,r), fluoroscopy time (FT), number of radiographic images (N) and fluoroscopy pulse rate, as well as total procedure duration, size and location of stones. Data were centrally analyzed and statistically compared. MedianPKAvalues per center varied 2-fold for RIRS (0.80-1.79 Gy cm2), 7.1-fold for mini-PCNL (1.39-9.90 Gy cm2), 7.3-fold for PCNL (2.40-17.50 Gy cm2), 19-fold (0.13-2.51 Gy cm2) for semi-rigid URS and 29-fold for flexible URS (0.10-2.90 Gy cm2). LowerPKAandKa,rwere associated with use of lower FT, N and lower fluoroscopy pulse rate. FT varied from 0.1 to 14 min, a small fraction of the total procedure time, ranging from 10 to 225 min. Higher N was associated with higherPKAandKa,r. Higher medianPKAin PCNL was associated with the use of supine compared to prone position. No correlation was found between the concrement size and procedure duration, FT,PKAorKa,r. Dose values for RIRS were significantly lower compared to PCNL. The maximumKa,rvalue of 377 mGy was under the threshold for radiation induced skin erythema. The study demonstrated a potential for patient dose reduction by lowering FT and N, using pulsed fluoroscopy and beam collimation.
Fetal magnetocardiography (fMCG) is a non-invasive biomagnetic technique that provides detailed beat-to-beat fetal heart rate analysis, both in normal rhythm as well as in fetal arrhythmias. New cryogenic-free sensors called optically pumped magnetometers (OPMs) have emerged as a less expensive and more geometrically flexible alternative to traditional Superconducting Quantum Interference Device (SQUID) technology for performing fMCG. The objective of the study was to show the ability of OPMs to record fMCG using flexible geometry while seeking to preserve signal quality, and to quantify fetal heart rate variability (FHRV).
Biomagnetic measurements were performed with OPMs in 24 healthy pregnant women with uncomplicated singleton pregnancies between 28 and 38 weeks gestation (GA). A total of 96 recordings were analyzed from OPM data that was collected using sensors placed in two different maternal configurations over the abdomen. The fMCG signals were extracted and the quality of the recordings were quantability to record and quantify fMCG in different maternal positions as opposed to rigid SQUID configurations.Magnetic Particle Imaging (MPI) is a novel technology, which opens new possibilities for promising biomedical applications. MPI uses magnetic fields to generate a specific response from magnetic nanoparticles (MNPs), to determine their spatial location non-invasively and without using ionizing radiation. One open challenge of MPI is to achieve further improvements in terms of sensitivity to translate the currently preclinical performed research into clinical applications. In this work, we study the noise and background signals of our preclinical MPI system, to identify and characterize disturbing signal contributions. The current limit of detection achieved with our device was determined previously to be 20 ng of iron. Based on the results presented in this work, we describe possible hardware and software improvements and estimate that the limit of detection could be lowered to about 200-400 pg. Additionally, a long-term analysis of the scanner performance over the last three years is presented, which proved to be an easy and effective way to monitor possible changes or damage of hardware components. All the presented results were obtained by analysing empty scanner measurements and the presented methodology can easily be adapted for different scanner types, to compare their performances.Charge injection and retention in thin dielectric layers remain critical issues due to the great number of failure mechanisms they inflict. Achieving a better understanding and control of charge injection, trapping and transport phenomena in thin dielectric films is of high priority aiming at increasing lifetime and improving reliability of dielectric parts in electronic and electrical devices. Thermal silica is an excellent dielectric but for many of the current technological developments more flexible processes are required for synthesizing high quality dielectric materials such as amorphous silicon oxynitride layers using plasma methods. In this article, the studied dielectric layers are plasma deposited SiO x N y . Independently on the layer thickness, they are structurally identical optically transparent, having the same refractive index, equal to the one of thermal silica. Influence of the dielectric film thickness on charging phenomena in such layers is investigated at nanoscale using Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy. The main effect of the dielectric film thickness variation concerns the charge flow in the layer during the charge injection step. According to the SiO x N y layer thickness two distinct trends of the measured surface potential and current are found, thus defining ultrathin (up to 15 nm thickness) and thin (15-150 nm thickness) layers. Nevertheless, analyses of KPFM surface potential measurements associated with results from finite element modeling of the structures show that the dielectric layer thickness has weak influence on the amount of injected charge and on the decay dynamics, meaning that pretty homogeneous layers can be processed. The charge penetration depth in such dielectric layers is evaluated to 10 nm regardless the dielectric thickness.The layered mineral tilkerodeite (Pd2HgSe3), the palladium analogue of jacutingaite (Pt2HgSe3), is a promising quantum spin hall insulator for low-power nanospintronics. In this context, a fast and reliable assessment of its structure is key for exploring fundamental properties and architecture of new Pd2HgSe3-based devices. Here, we investigate the first-order Raman spectrum in high-quality, single-crystal bulk tilkerodeite, and analyze the wavenumber relation to its isostructural jacutingaite analogue. By using polarized Raman spectroscopy, symmetry analysis, and first-principles calculations, we assigned all the Raman-active phonons in tilkerodeite, unveiling their wavenumbers, atomic displacement patterns, and symmetries. Our calculations used several exchange-correlation functionals within the density functional perturbation theory framework, reproducing both structure and Raman-active phonon wavenumbers in excellent agreement with experiments. Also, it was found that the influence of the spin-orbit coupling can be neglected in the study of these properties.