10/11/2024


As a consequence, this renewable, biodegradable and eco-friendly oil scavenger presents a bright prospect in practical applications.The effects of Naphthol Yellow S (NYS) on the structure and activity of pepsin were carried out using ultraviolet-visible (UV-Vis) spectroscopy, intrinsic fluorescence spectroscopy, circular dichroism (CD), thermal stability, kinetic techniques, as well as molecular docking, and Molecular dynamic simulations (MD) technique. The experimental results from fluorescence spectroscopy showed that the changes in pepsin's tertiary structure were caused by NYS binding. https://www.selleckchem.com/products/forskolin.html The apparent binding constant Ka, the number of the binding sites, and thermodynamic parameters were computed at three different temperatures. Thermodynamic results revealed that NYS interacts with pepsin spontaneously by hydrogen bond and Van der Waals forces. The result of the circular dichroism spectral suggests the secondary structural changes. An increase in the content of the β-sheet and β-turn structure was shown. Kinetic parameters revealed that NYS inhibited the activity of pepsin by the mixed model. The Molecular dynamic (MD) and docking simulations supported experimental findings. The main interactions between NYS and pepsin are hydrogen bonds and Van der Waals Forces. As a result, NYS could be considered as an inhibitor with adverse effects on pepsin structure and function.Cellulose and silk fibroin were dissolved in 1-Butyl-3-methylimidazolium chloride [Bmim][Cl] and regenerated with ethanol to form homogenous blend of regenerated cellulose/silk fibroin. The bioactivity of regenerated cellulose/silk matrix to assist calcium phosphate mineralization was studied in the current article. Cellulose/silk fibroin/calcium phosphate biocomposite was investigated by different characterization methods such as FT-IR, XRD, TGA, SEM and EDX. The potential of the prepared composite for removal of organic dyes, such as methylene blue (MB), was calculated. The prepared biocomposite exhibited high removal efficiency for MB (172.4 mg/g) compared to regenerated cellulose/silk fibrin blend which is 120.4 mg/g. The kinetic study and the isotherm results for the examined materials followed pseudo second order and Langmuir models, respectively. The regenerated cellulose/silk/calcium phosphate biocomposite, thus providing prospects for further research and application in the remediation of water from dye pollution.Infections are the leading cause of failure of osteogenic material implantation. Antibiotic treatment, treatment with bone cement, or collagen sponge placement can result in drug resistance and difficulties in operation. To address this, gellan gum (GG) was selected in this study and prepared as an injectable hydrogel containing chlorhexidine (CHX) and nanohydroxyapatite (nHA) that overcomes these intractable problems. Scanning electron microscopy and micro-computed tomography revealed a three-dimensional polymeric network of the hydrogel. The hydrogel had excellent biocompatibility, as detected by cell counting kit-8 and Live/Dead assay. Bone marrow mesenchymal stem cells could be encapsulated into the network, showing that the structure was suitable for cell growth. Additionally, loading the hydrogel with nHA improved its mechanical, biodegradable, and osteogenic properties. Quantitative alkaline phosphatase and Alizarin Red S staining validated its osteogenic ability. Furthermore, antibacterial activity assessment showed that the hydrogel loaded with 50 μg/mL CHX inhibited Enterococcus faecalis in a concentration-dependent manner. Thus, we report an injectable GG-based hydrogel with superior antibacterial effect against E. faecalis and osteogenesis, which holds promise for treating infectious bone defects caused by refractory periradicular periodontitis.Composite polycaprolactone-chitosan material was produced by an electrospinning method and used as a support for immobilization of tyrosinase by mixed ionic interactions and hydrogen bonds formation. The morphology of the fibers and enzyme deposition were confirmed by SEM images. Further, multivariate polynomial regression was used to model the experimental data and to determine optimal conditions for immobilization process, which were found to be pH 7, temperature 25 °C and 16 h process duration. Under these conditions, novel type of biocatalytic system was produced with immobilization yield of 93% and expressed activity of 95%. Furthermore, as prepared system was applied in batch experiments related to biodegradation of bisphenol A under various remediation conditions. It was found that over 80% of the pollutant was removed after 120 min of the process, in the temperature range 15-45 °C and pH 6-9, using solutions at concentration up to 3 mg/L. Experimental data collected proved that the stability and reusability of the tyrosinase were significantly improved upon immobilization the immobilized biomolecule retained around 90% of its initial activity after 30 days of storage, and was still capable to remove over 80% of bisphenol A even after 10 repeated uses. By contrast, free enzyme was able to remove over 80% of bisphenol A at pH 7-8 and temperature range 15-35 °C, and retained less than 60% of its initial activity after 30 days of storage.In this study, inspired by nacre-like structural natural shells, novel three-dimensional (3D) nanocomposites based on natural nanoplatelets of montmorillonite (MMT) and polysaccharide of chitosan (CS) were prepared with solution intercalation and self-assembly process. The CS-intercalated-MMT nanoplatelets units acted as "bricks" and CS molecules acted as "mortar", arranging in fairly well-ordered layered structure. With addition of glutaraldehyde (GA) and Pd2+ cations, synergistic toughening and strengthening effects of covalent and ionic bonds could be achieved. The best mechanical properties of the prepared 3D nanocomposites were observed as 5.6 KJ/m2 (impact strength), 3.3 GPa (flexural modulus), and 65.8 MPa (flexural strength), respectively, which showed higher toughness but lower flexural properties than natural pearl mussel shells. Nevertheless, both the impact and flexural properties of the prepared 3D nanocomposite were much higher than the other natural shell, i.e. green grab shell. Besides conventional methods characterizations, the nacre-like structure of the artificial 3D nanocomposite was further evidenced with positron annihilation lifetime spectroscopy characterizations.