4 Wh kg-1 at the power density of 50 W kg-1 was achieved.Tuning the surface chemistry of nanocellulose is essential for developing its end-use applications. Herein, different carboxyalkylated cellulose nanocrystals (CNC) with similar charge densities but with tunable hairy structures were produced. The effect of carbon spacer of the grafted groups on the interaction of the CNC and a cationic surfactant, myristyl trimethyl ammonium bromide (MTAB), at different pH and salinity was explored. The CNC with longer grafted chain length was more hydrophobic, adsorbed more MTAB, and formed a more compact MTAB adlayer than did CNC with the shorter chain length. Also, the adsorption was higher at neutral pH, implying a high electrostatic attraction and hydrophobic interaction between substrates. The hydrophobic interaction of MTAB and hairy CNC in saline systems improved its adsorption. Although MTAB adsorbed more when its concentration was higher than its critical micelle concentration (CMC), the adsorbed adlayer had a less compact structure on the CNC surfaces.Yogurt drinks can potentially be an appropriate medium for delivering probiotics to consumers. This study investigated the influences of the water-soluble fraction of bitter almond gum (SBAG) and its conjugate with sodium caseinate (SBAG-SC) compared to carboxymethylcellulose (CMC) and inulin, respectively, on the physical stability of casein micelles and the viability of the probiotic culture (Lactobacillus acidophilus La-5) in probiotic yogurt drink during cold storage. The addition of SBAG-SC conjugate to the drinks successfully prevented phase separation for a longer time than CMC. CMC-based drinks exhibited a strong shear-thinning response. Adding SBAG helped keep Lactobacillus acidophilus La-5 viable above the recommended level for probiotic products. However, the SBAG showed relatively less prebiotic property than inulin. This study demonstrated that SBAG-SC conjugate has a high potential for stabilizing applications in yogurt and yogurt products.In this paper, a novel redox-responsive nanoparticles has been designed for targeted delivery of docetaxel (DTX). Chondroitin sulfate (CS) was used to construct the nanoparticles due to the ability of tumor targeting through binding with CD44 receptor that overexpresses on the surfaces of various tumor cells. A redox-responsive small-molecular DTX prodrug was prepared through modifying with cystamine containing disulfide bonds (Cys-DTX). Then the DTX prodrug was grafted to the CS to construct the amphiphilic polymer (CS-ss-DTX). Further, Cys-DTX/CS-ss-DTX nanoparticles were formed by self-assembly of amphiphilic polymer and incorporation of free Cys-DTX prodrug. This category of nanosized DTX delivery system was expected for not only exhibiting high permeability and cytotoxicity of Cys-DTX prodrug, but also targeting transportation of encapsulated redox-responsive Cys-DTX prodrug. According to results of related researches on physicochemical properties and biological evaluation, the novel redox-responsive Cys-DTX/CS-ss-DTX nanoparticles increased amount of DTX released from the nanoparticles in reductive environment, improved permeability in tumor tissues, enhanced cytotoxicity and decreased side effects compared with free DTX. All of these results showed that this kind of Cys-DTX/CS-ss-DTX nanoparticles were worthy of being expectation in tumor chemotherapy in future.Fructooligosaccharide was isolated from Polygonatum Cyrtonema Hua (PFOS) for the first time. Structure characterized using FT-IR, MALDI-TOF-MS, NMR, AFM, and TEM, indicated that PFOS was graminan-type fructan with a degree of polymerization ranging from 5 to 10. A murine model of lipopolysaccharide (LPS)-induced peritonitis was used to evaluate the in vivo anti-inflammatory and lung protective efficacy of PFOS. The result shown that pretreatment with PFOS (1.0 mg/mL) in peritonitis-induced mice could significantly inhibit the level of pro-inflammatory cytokines (TNF-α, IL-1β) in serum (P less then 0.001), increase mice survival rate from 12.5 % to 54 % (P less then 0.05), and alleviated lung injury through ameliorating the damage of the pulmonary cellular architecture and reducing inflammatory monocyte accumulation in lung tissue. This effect of oligosaccharides could explain the traditional usage of P. cyrtonema as a tonic medicine for respiratory problems and it could be used as a potential natural ingredient with anti-inflammatory activity.One of the key issues in the development of biofuels using lignocellulosic feedstocks is to increase the yield of fermented sugar, and simultaneously decrease the generation of fermentation inhibitors. https://www.selleckchem.com/products/Phlorizin(Phloridzin).html Therefore, it is essential to understand the degradation mechanism of xylan during hot-water pretreatment. We analyzed the hydrothermal degradation products of xylan and xylose under different conditions. Results showed that furfural and formic acid formed from xylose reached a maximum value of 32.56 % and 35.14 %, respectively. By increasing the initial pH of the xylan solution, the furfural concentration can be reduced effectively to 2% and the formation of formic acid was preferred under alkaline conditions. On this basis, we proposed a new hydrothermal degradation pathway of xylan in alkaline solution. The in-depth understanding of xlyan degradation during hot water pre-treatment will be beneficial for improving the efficiency of biofuel production.Studies on interactions between oppositely charged polysaccharides have gathered great interest. We proposed that the association between oppositely charged polymers could be regulated via hydration. A comparison study was carried out by using quaternary chitosan with different counterions(Cl-, Ac-, OH-) and sodium alginate. The results showed that the association between quaternary chitosan with less hydrated counter anion Cl- and sodium alginate was weaker than that between quaternary chitosan with more hydrated counter anion Ac- and sodium alginate. There was a pH transition point of thermal change of association between oppositely charged polymers, as the solution's pH had more effect on the hydration of polymers than counter ions. Further studies showed that a fraction of Cl- was still attracted by polycation in the complex and competed with the interaction of polyanion after complexation. The competitive combination was critical for the property (such as self healing behavior) of the carbohydrate polymer complex.