09/28/2024


Plant glandular trichomes (GTs) are epidermal outgrowths with the capacity to biosynthesize and secrete specialized metabolites, that are of great scientific and practical significance. Our understanding of the developmental process of GTs is limited, and no single plant species serves as a unique model. Here, we review the genetic mechanisms of GT initiation and development and provide a summary of the biosynthetic pathways of GT-specialized metabolites in nonmodel plant species, especially horticultural crops. We discuss the morphology and classification of GT types. Moreover, we highlight technological advancements in methods employed for investigating GTs. Understanding the molecular basis of GT development and specialized metabolites not only offers useful avenues for research in plant breeding that will lead to the improved production of desirable metabolites, but also provides insights for plant epidermal development research.DNA methylation has been proposed to regulate plant stress resistance. However, the dynamic changes in DNA methylation in woody plants and their correlations with pathogenic responses are not fully understood. Here, we present single-base maps of the DNA methylomes of mulberry (Morus notabilis) leaves that were subjected to a mock treatment or inoculation with Botrytis cinerea. Compared with the former, the latter showed decreased mCG and mCHG levels and increased mCHH levels. DNA methylation inhibitors reduced resistance gene methylation levels and enhanced mulberry resistance, suggesting that the hypomethylation of resistance genes affects mulberry resistance to B. cinerea. Virus-induced gene silencing of MnMET1 enhanced the expression of mulberry-resistance genes, thereby increasing the plant's resistance to B. cinerea. https://www.selleckchem.com/products/AZD0530.html We also found that MITEs play a dominant role in controlling DNA methylation levels. MITEs appear to be the main sources of 24-nt siRNAs that regulate gene expression through the RNA-directed DNA methylation pathway.Jasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.Mature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2-3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.Flower type is an important and extremely complicated trait of chrysanthemum. The corolla tube merged degree (CTMD) and the relative number of ray florets (RNRF) are the two key factors affecting chrysanthemum flower type. However, few reports have clarified the inheritance of these two complex traits, which limits directed breeding for flower-type improvement. In this study, 305 F1 hybrids were obtained from two parents with obvious differences in CTMD and RNRF performance. Using specific-locus amplified fragment sequencing (SLAF-seq) technology, we constructed a high-density genetic linkage map with an average map distance of 0.76 cM. Three major QTLs controlling CTMD and four major QTLs underlying RNRF were repeatedly detected in the 2 years. Moreover, the synteny between the genetic map and other Compositae species was investigated, and weak collinearity was observed. In QTL regions with a high degree of genomic collinearity, eight annotated genes were probed in the Helianthus annuus L. and Lactuca sativa L. var. ramosa Hort. genomes. Furthermore, 20 and 11 unigenes were identified via BLAST searches between the SNP markers of the QTL regions and the C. vestitum and C. lavandulifolium transcriptomes, respectively. These results lay a foundation for molecular marker-assisted breeding and candidate gene exploration in chrysanthemum without a reference assembly.Members of the genus Paeonia, which consists of globally renowned ornamentals and traditional medicinal plants with a rich history spanning over 1500 years, are widely distributed throughout the Northern Hemisphere. Since 1900, over 2200 new horticultural Paeonia cultivars have been created by the discovery and breeding of wild species. However, information pertaining to Paeonia breeding is considerably fragmented, with fundamental gaps in knowledge, creating a bottleneck in effective breeding strategies. This review systematically introduces Paeonia germplasm resources, including wild species and cultivars, summarizes the breeding strategy and results of each Paeonia cultivar group, and focuses on recent progress in the isolation and functional characterization of structural and regulatory genes related to important horticultural traits. Perspectives pertaining to the resource protection and utilization, breeding and industrialization of Paeonia in the future are also briefly discussed.Tissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.The switch from vegetative growth to reproductive growth is a key event in the development of a plant. Here, the product of the chrysanthemum gene CmMYB2, an R2R3 MYB transcription factor that is localized in the nucleus, was shown to be a component of the switching mechanism. Plants engineered to overexpress CmMYB2 flowered earlier than did wild-type plants, while those in which CmMYB2 was suppressed flowered later. In both the overexpression and RNAi knockdown plants, a number of genes encoding proteins involved in gibberellin synthesis or signaling, as well as in the response to photoperiod, were transcribed at a level that differed from that in the wild type. Both yeast two-hybrid and bimolecular fluorescence complementation assays revealed that CmMYB2 interacts with CmBBX24, a zinc-finger transcription factor known to regulate flowering by its influence on gibberellin synthesis.Native to South America, the tomato is now grown almost worldwide. During its domestication and improvement, important selection signatures were fixed in certain agronomic and adaption traits. Such traits include fruit morphology, which became a major target for selection over the centuries. However, little is known about precisely when some mutations arose and how they spread through the germplasm. For instance, elongated fruit variants, originating both via mutations in SUN and OVATE genes, may have arisen prior to domestication or during tomato cultivation in Europe. To gain insights into the tomato admixture and selection pattern, the genome of two tomato herbarium specimens conserved in the Herbarium Porticense (PORUN) was sequenced. Comparison of the DNA of herbarium samples collected in Italy between 1750 and 1890 with that of living tomato accessions yielded insights into the history of tomato loci selection. Interestingly, the genotype of the more recent sample (LEO90), classified in 1890 as the oblungum variety, shows several private variants in loci implicated in fruit shape determination, also present also in wild tomato samples. In addition, LEO90, sampled in the nineteenth century, is genetically more distant from cultivated varieties than the SET17 genotype, collected in the eighteenth century, suggesting that elongated tomato varieties may originate from a cross between a landrace and a wild ancestor. Findings from our study have major implications for the understanding of tomato migration patterns and for the conservation of allelic diversity and loci recovery.