09/07/2024


Integrating functionalities such as adhesiveness, self-healing, and conductivity on a polysaccharide-based hydrogel is highly desirable for ever-expanding practical applications, but there is always a challenge. Herein, an elaborately designed nanocomposite hydrogel is fabricated by the addition of highly conductive Ti3C2Tx MXene nanosheets into chondroitin sulfate (CS)/N, N-dimethylamino ethyl acrylate (DMAEA-Q) hydrogel network. Owing to the introduction of sulfonated Ti3C2Tx MXene nanosheets, the as-prepared nanocomposite hydrogels exhibit excellent stretchability (> 5000% strain), rapid self-healing ability ( less then 60 s), and high adhesiveness (≈ 100 kPa). The proposed hydrogel demonstrates an outstanding electrical conductivity up to 5.33 S/m, allowing real-time monitoring of the bending and stretching movements and full recovery. Furthermore, the SMC hydrogels exhibit fast and stable photothermal conversion performance due to the inherent photothermal behavior. Notably, multifunctional SMC hydrogels present real-time and reversible humidity sensing upon H2O-induced swelling/contraction of nanochannels between the Ti3C2Tx MXene interlayers, enabling respiration monitoring applications.The immunomodulatory effects and signalling pathways of five water-soluble yeast β-glucan fractions (WYG1-5) with different molecular weights (Mw) and chain conformations were investigated in RAW264.7 macrophages. All five WYG fractions were shown to increase nitric oxide (NO) production, phagocytosis activity and cytokine secretion compared with the normal group. The incubation of cells with WYG for 2 h and then with lipopolysaccharide (LPS) for 24 h showed an inhibition of NO production, phagocytosis activity, cytokine secretion, and the expression of inducible nitric oxide synthase (iNOS) and cytokine mRNA compared with the LPS group. The results showed a two-way immunomodulatory effect of WYG on inflammatory factors, with the best effect for WYG-2 having a Mw of 2830 × 103 g/mol and spherical conformation. Furthermore, both mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signalling pathways were triggered in the two-way immunomodulation. This study reveals the structure-activity relationship and provides a pharmacological basis for controlling inflammatory disorders with WYG.The effect of fatty acid type bonded to chitosan on the emulsifying properties of chitosan-based particles was investigated. Capric acid, myristic acid, and stearic acid were attached to chitosan chains. Longer fatty acids in the structure of chitosan lead to the better and more uniform formation of chitosan nanogels. The contact angle of chitosan, chitosan-capric acid, chitosan-myristic acid and chitosan-stearic acid were found to be 52.5°, 60.0°, 65.1° and 72.5°, respectively. Different chitosan nanogels were used to stabilize walnut oil emulsions, and the emulsion stabilized with chitosan-stearic acid nanogels had the lowest creaming index (15.2%). Stabilized emulsions with chitosans attached to longer chain acids were more adapted to the mechanism of Pickering emulsions, in addition to having higher viscosity as well as more gel-like behavior. In general, this study showed that emulsifying properties of chitosan could be improved by increasing the number of fatty acid carbons bonded to chitosan.This is the first time to report a facile strategy to fabricate galactoglucomannan-based latex with highly transparent, hydrophobic and flexible characteristics by combining etherification with subsequent emulsion polymerization. The allylated galactoglucomannans (A-GGM) and galactoglucomannan-based latexes (GGM-L) were prepared and their chemical structure, substitution degree, molecular weight, conversion rate, particle size and zeta potential were characterized by ATR-FTIR, 1HNMR, quantitative 13CNMR, HP-SEC, HPLC and zeta-sizer nanometer analyzer, respectively. Furthermore, the effects of substitution degree on film surface roughness and homogeneity, water vapor permeability (WVP) and thermal stability were evaluated by AFM, SEM, WVP and TGA, respectively. The optimal GGM-L film exhibited 91.3% transmittance and 0.43% haze, 117° water contact angle, 31.2% elongation at break and 30.9 MPa ultimate tensile stress. The bio-based content of the GGM-L may reach about 99 wt%, which provides a promising avenue for polyolefin-based latex replacement for paper and paperboard applications.Isomaltomegalosaccharide (IMS) is a long chimeric glucosaccharide composed of α-(1 → 6)- and α-(1 → 4)-linked segments at nonreducing and reducing ends, respectively; the hydrophilicity and hydrophobicity of these segments are expected to lead to bifunctionality. We enzymatically synthesized IMS with average degrees of polymerization (DPs) of 15.8, 19.3, and 23.5, where α-(1 → 4)-segments had DPs of 3, 6, and 9, respectively. IMS exhibited considerably higher water solubility than maltodextrin because of the α-(1 → 6)-segment and an identical resistance to thermal degradation as short dextran. Interaction of IMS with a fluorescent probe of 2-p-toluidinylnaphthalene-6-sulfonate demonstrated that IMS was more hydrophobic than maltodextrin, where the degree of hydrophobicity increased as DP of α-(1 → 4)-segment increased (9 > 6 > 3). Fluorescent pyrene-estimating polarity of IMS was found to be similar to that of methanol or 1-butanol. The bifunctional IMS enhanced the water solubility of quercetin-3-O-glucoside and quercetin the solubilization of less-soluble bioactive substances is beneficial in carbohydrate industry.In this study, the effects of n-decanoic acid (n-CA) or coconut oil (CCN) on the release of ethylene from V-type starch (VS) were investigated. Results of differential scanning calorimetry showed that adding n-CA or CCN into VS generated a starch-lipid complex. Results of scanning electron microscopy and confocal laser scanning microscopy indicated that VS granules aggregated but oil films appeared on the surface of the VS aggregates when oil was added. The addition of n-CA or CCN effectively delayed the release of ethylene in VS, and the deceleration effect gradually became obvious with the increase in oil addition. These results suggest that the formation of starch-lipid complexes, the aggregation of starch granules, and the presence of oil films play important roles in slowing down the release of ethylene.An N-acetylcysteine functionalized chitosan oligosaccharide-palmitic acid conjugate (NAC-COS-PA) with bioadhesive and permeation promoting properties was synthesized to enhance transocular drug delivery. Flurbiprofen (FB) loaded self-assembled NAC-COS-PA nanomicelles (NAC-COS-PA-FB) were prepared and the drug loading was 7.35 ± 0.32%. Human immortalized corneal epithelial (HCE-T) cell cytotoxicity and hen's egg test-chorioallantoic membrane assays confirmed that the conjugate had good biocompatibility. https://www.selleckchem.com/products/ABT-737.html The transportation efficiency of coumarin-6 (C6) loaded nanomicelles in the HCE-T cell monolayer was approximately 1.97 times higher than that of free C6. Decreased intracellular Ca2+ concentration and cell membrane potential, increased cell membrane fluidity, and reversible changes in the F-actin cytoskeleton are presumed to be responsible for the enhanced drug permeation. NAC-COS-PA exhibited strong binding capacity with mucin and rabbit eyeball. In vivo pharmacokinetics indicated that the area under the curve (AUC0-6 h) and the maximum concentration (Cmax) of NAC-COS-PA-FB were approximately 1.92 and 2.44 times that of the FB solution, respectively. NAC-COS-PA-FB demonstrated the best in vivo anti-inflammatory efficacy compared to unfunctionalized nanomicelles (COS-PA-FB) and FB solution. Consequently, NAC-COS-PA appears to be a promising bioadhesive carrier for ophthalmic delivery.As a significant public health hazard with several drug side effects during medical treatment, searching for novel therapeutic natural medicines is promising. Sulfated polysaccharides from algae, such as fucoidan, have been discovered to have a variety of medical applications, including antibacterial and immunomodulatory properties. The review emphasized on the utilization of fucoidan as an antiviral agent against viral infections by inhibiting their attachment and replication. Moreover, it can also trigger immune response against viral infection in humans. This review suggested to be use the fucoidan for the potential protective remedy against COVID-19 and addressing the antiviral activities of sulfated polysaccharide, fucoidan derived from marine algae that could be used as an anti-COVID19 drug in near future.Bacterial biofilm formation is dependent mainly on the decision-making process of the two key factors of the gene regulatory network, namely the Quorum Sensing (QS) system and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). c-di-GMP is a secondary messenger molecule that enhances extracellular polysaccharides production by activating pelD and alg44. Genes involved in the metabolic pathway for the biosynthesis of extracellular polysaccharides are clustered within the genome of the producing bacteria. The extracellular polysaccharide gene cluster encodes specific regulatory enzymes and transporter proteins involved in the different steps of the biosynthesis route. The diversity of extracellular polysaccharides produced by the bacteria is synthesized via different biosynthesis pathways. Understanding the genetic regulation and biosynthesis of extracellular polysaccharides is crucial for tailor-made polymers via genetic, metabolic, and protein engineering approaches. This review illustrates structure, structure-function relationship, genetics, regulation, biosynthetic pathways, and various applications of extracellular polysaccharides.Previously, arabinoxylan (AX) depolymerization by dietary endo-xylanase was observed in the broiler ileum, but released arabinoxylo-oligosaccharides (AXOS) were not characterized in detail. This study aimed at extracting and identifying AXOS released in vivo in broilers, in order to delineate the influence of endo-xylanase on AX utilization. Hereto, digesta from the gizzard, ileum, ceca and excreta of broilers fed a wheat-soybean diet without (Con) or with endo-xylanase supplementation (Enz) were assessed. Soluble AX content in the ileum was higher for Enz diet (26.9%) than for Con diet (18.8%), indicating a different type and amount of AX entering the ceca. Removal of maltodextrins and fructans enabled monitoring of AX depolymerization to AXOS (Enz diet) using HPSEC-RI and HPAEC-PAD. A recently developed HILIC-MSn methodology allowed AXOS (DP 4-10) identification in ileal digesta and excreta. Xylanase-induced AXOS formation coincided with decreased total tract AX recovery, which indicated improved AX hindgut utilization.Polysaccharide is one of the main active components of Polygonatum sibiricum. For this study, P. sibiricum polysaccharides (PSP) were obtained through purification using DEAE-Cellulose52 and Sephacryl G-150 column chromatography. The obtained samples were named PSP1, PSP2 and PSP3. The PSP1 sample was found to have the highest content and the best solubility, and a subsequent. So, its structure and characterization were analyzed. The main sugar residue linkages were found to be → 1)-β-D-Fruf-(2 → 1)-β-D-Fruf-(2 → 1), 1 → -β-D-Fruf-(2 → 6)α-D-Glcp (1→, →4)-β-D-Manp-(1 → 4)-β-D-Manp-(1→ and →6)-β-D-Glcp-(1 → 4)-β-D-Manp-(1→ link existed. Branch chain analysis indicated →1,6)-β-D-Fruf-(2→, β-D-Fruf-(2→, →1,6)-β-D-Fruf-(2→, →6)-β-D- Fruf-(2→ link existed, and the link site was at position C-6. In vitro antioxidant activity tests showed that PSP1 had a certain scavenging effect on DPPH, hydroxyl radical, superoxide anion radical and a particular effect on the chelating ability of ferrous. This suggested that P. sibiricum polysaccharides may be a potential antioxidant.