09/07/2024


Proximal humerus fractures (PHFs) are managed with open reduction and internal fixation (ORIF), hemiarthroplasty (HA), reverse shoulder arthroplasty (RSA), or nonoperatively. Given the mixed results in the literature, the optimal treatment is unclear to surgeons. The purpose of this study was to survey orthopedic shoulder and trauma surgeons to identify the patient- and fracture-related characteristics that influence surgical decision-making.

We distributed a 23-question closed-response email survey to members of the American Shoulder and Elbow Surgeons and Orthopaedic Trauma Association. Questions posed to respondents included demographics, surgical planning, indications for ORIF and arthroplasty, and the use of surgical augmentation with ORIF. Numerical and multiple-choice responses were compared between shoulder and trauma surgeons using unpaired t-tests and χ
tests, respectively.

Respondents included 172 shoulder and 78 trauma surgeons. When surgery is indicated, most shoulder and trauma surgeons hritis. The preferred management differed between shoulder and trauma surgeons for half of the common PHF presentations, highlighting the need for future research.
Unmeasured confounding poses a serious threat to observational studies of post-TB health outcomes. E-values have been recently proposed as a method to assess the magnitude of unmeasured confounding necessary to nullify, or to render non-significant, relative effect estimates from observational studies.

We calculated E-values for both the risk ratio (RR) point estimates and their lower 95% confidence limits (LCL) from studies of post-TB mortality, respiratory disease, and cardiovascular disease (CVD) included in published systematic reviews within and across post-TB outcome domains. We also employed a meta-analytic E-value approach to estimate the proportion of unconfounded study RRs greater than 1.1 at different levels of unmeasured confounding.

Across post-TB health outcome domains, we observed a median E-value of 5.59 (IQR=3.19-7.35) for RRs, and 2.95 (IQR=1.71-4.61) for LCLs. Post-TB mortality studies had higher median E-values (E-value
=6.90 and E-value
=4.54) than studies of respiratory disease (ues than TB-CVD studies, indicating that either (a) TB-CVD studies may be more susceptible to unmeasured confounding bias, or (b) the true effect of TB on CVD is lower.Sex pheromones facilitate species-specific sex communication within the Lepidoptera. They are detected by specialised pheromone receptors (PRs), most of which to date fall into a single monophyletic receptor lineage (frequently referred to as "the PR clade") within the odorant receptor (OR) family. Here we investigated PRs of the invasive horticultural pest, Epiphyas postvittana, commonly known as the light brown apple moth. Ten candidate PRs were selected, based on their male-biased expression in antennae or their relationship to the PR clade, for functional assessment in both HEK293 cells and Xenopus oocytes. Of these, six ORs responded to compounds that include components of the E. postvittana ('Epos') sex pheromone blend or compounds that antagonise sex pheromone attraction. In phylogenies, four of the characterised receptors (EposOR1, 6, 7 and 45) fall within the PR clade and two other male-biased receptors (EposOR30 and 34) group together well outside the PR clade. This new clade of pheromone receptors includes the receptor for (E)-11-tetradecenyl acetate (EposOR30), which is the main component of the sex pheromone blend for this species. Interestingly, receptors of the two clades do not segregate by preference for compounds associated with behavioural response (agonist or antagonist), isomer type (E or Z) or functional group (alcohol or acetate), with examples of each scattered across both clades. Phylogenetic comparison with PRs from other species supports the existence of a second major clade of lepidopteran ORs including, EposOR30 and 34, that has been co-opted into sex pheromone detection in the Lepidoptera. This second clade of sex pheromone receptors has an origin that likely predates the split between the major lepidopteran families.The threatening context of the COVID-19 pandemic provided a unique setting to study the effects of negative psychological symptoms on memory processes. Episodic memory is an essential function of the human being related to the ability to store and remember experiences and anticipate possible events in the future. Studying this function in this context is crucial to understand what effects the pandemic will have on the formation of episodic memories. To study this, the formation of episodic memories was evaluated by free recall, recognition, and episode order tasks for an aversive and neutral content. The results indicated that aversive episodic memory is impaired both in the free recall task and in the recognition task. Even the beneficial effect that emotional memory usually has for the episodic order was undermined as there were no differences between the neutral and aversive condition. The present work adds to the evidence that indicates that the level of activation does not modify memory processes in a linear way, which also depends on the type of recall and the characteristics of the content to be encoded.
Electromagnetic navigation bronchoscopy (ENB) is a minimally invasive, image-guided approach to access lung lesions for biopsy or localization for treatment. However, no studies have reported prospective 24-month follow-up from a large, multinational, generalizable cohort. This study evaluated ENB safety, diagnostic yield, and usage patterns in an unrestricted, real-world observational design.

The NAVIGATE single-arm, pragmatic cohort study (NCT02410837) enrolled subjects at 37 academic and community sites in seven countries with prospective 24-month follow-up. Subjects underwent ENB using the superDimension navigation system versions 6.3 to 7.1. The prespecified primary end point was procedure-related pneumothorax requiring intervention or hospitalization.

A total of 1388 subjects were enrolled for lung lesion biopsy (1329; 95.7%), fiducial marker placement (272; 19.6%), dye marking (23; 1.7%), or lymph node biopsy (36; 2.6%). Concurrent endobronchial ultrasound-guided staging occurred in 456 subjects.d a 67.8% diagnostic yield while allowing biopsy, staging, fiducial placement, and dye marking in a single procedure.We present GranatumX, a next-generation software environment for single-cell RNA sequencing (scRNA-seq) data analysis. GranatumX is inspired by the interactive webtool Granatum. GranatumX enables biologists to access the latest scRNA-seq bioinformatics methods in a web-based graphical environment. It also offers software developers the opportunity to rapidly promote their own tools with others in customizable pipelines. The architecture of GranatumX allows for easy inclusion of plugin modules, named Gboxes, which wrap around bioinformatics tools written in various programming languages and on various platforms. GranatumX can be run on the cloud or private servers and generate reproducible results. It is a community-engaging, flexible, and evolving software ecosystem for scRNA-seq analysis, connecting developers with bench scientists. GranatumX is freely accessible at http//garmiregroup.org/granatumx/app.Noncoding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional noncoding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, that can accurately predict the tissue-specific impact of noncoding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant-gene expression associations in a variety of human tissues, RegVar vastly surpasses all current noncoding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a webserver at http//regvar.cbportal.org/.
COVID-19 pandemic aside, climate change is the ultimate challenge of our time. However, to date, there has been insufficient political thrust to make that much-needed climate action a reality.

Infectious diseases represent only one facet of the threats arising from climate change. Direct impacts from climate change include the more frequent occurrence and increased magnitude of extreme weather events, as well as changing temperatures and precipitation patterns. For climate-sensitive infectious diseases, these changes implicate a shift in geographical and temporal distribution, seasonality, and transmission intensity.

Susceptibility to the deleterious effects of climate change is a net result of the interplay of not only environmental factors, but also human, societal, and economic factors, with social inequalities being a major determinant of vulnerability. The global South is already disproportionately affected by the climate crisis. The financial capacity to pursue adaptation options is also limited and unevenly distributed.

Climate change-induced mortality and morbidity from both infectious and non-infectious diseases, among other adverse scenarios, are expected to rise globally in the future. The coming decade will be crucial for using all remaining opportunities to develop and implement adequate mitigation and adaptation strategies.
Climate change-induced mortality and morbidity from both infectious and non-infectious diseases, among other adverse scenarios, are expected to rise globally in the future. The coming decade will be crucial for using all remaining opportunities to develop and implement adequate mitigation and adaptation strategies.Ablation of the gene encoding the nuclear receptor Hepatocyte Nuclear Factor 4a (Hnf4a) in the liver strongly affects HDL concentration, structure and functionality but the role of this receptor in the intestine, the second organ contributing to serum HDL levels, has been overlooked. In the present study we show that mice with intestine-specific ablation of Hnf4a (H4IntKO) had undetectable levels of ΗΝF4A in ileum, proximal and distal colon but normal expression in liver. H4IntKO mice presented normal serum lipid levels, HDL-C and particle size (α1-α3). The expression of the major HDL biogenesis genes Apoa1, Abca1, Lcat was not affected but there was significant increase in Apoc3 as well as in Hnf4g, a paralog of Hnf4a. RNA-sequencing identified metabolic pathways significantly affected by Hnf4a ablation such as type II diabetes, glycolysis, gluconeogenesis and p53 signaling. Chromatin immunoprecipitation assays showed that HNF4G bound to various apolipoprotein gene promoters in control mice but its binding affinity was reduced in the ileum of H4IntKO mice suggesting a redundancy but also a cooperation between the two factors. https://www.selleckchem.com/products/k03861.html In the distal colon of H4IntKO mice, where both HNF4A and HNF4G are absent and in a mouse model of DSS-induced colitis presenting decreased levels of HNF4A, most lipoprotein genes were strongly downregulated. In conclusion, Hnf4a ablation in mice does not significantly affect serum lipid levels or lipoprotein gene expression in ileum possibly due to compensatory effects by its paralog Hnf4g in this tissue.