12/12/2024


ctions, especially in children.UTI has been reported as the most prevalent infectious complication after-kidney transplantation. This study aimed to evaluate the bacterial urinary tract infection among renal transplant recipients, and causative microorganisms from the Middle East. We searched literatures reporting the prevalence of UTI, bacterial pathogens, and antibiotic resistance pattern from January 1, 2010-May 10, 2020 for patients with renal transplant recipients from the Middle East in international databases. Terms used were; "Urinary tract infection", "UTI", "bacterial pathogens", "bacterial infection", "renal transplant", "kidney transplant", post - renal transplant, "antibiotic resistance", "Middle East", Turkey, Iran, Jordan, Kuwait, Bahrain, Lebanon, United Arab Emirates, Qatar, Cyprus, Yemen, Iraq, Egypt, Palestine, and Syria. Data analyzed using CMA software. The prevalence of UTI among renal transplant recipients from the Middle East varied between 4.5 and 85%. The combined prevalence of UTI was reported by 37.9% (95% Cl 28.3-48.5). The most prevalent organisms recovered from urine samples of patients with UTI were E. coli and Klebsiella with prevalence rate of 57.5%, and 15%, respectively. Also, Coagulase negative Staphylococcus (15%), and Enterococci (11.2%) were the most predominant among Gram positive microorganisms. The most resistance among Gram negative microorganisms belonged to Ceftazidime with frequency of 90% followed by Carbenicillin and Cephalexin with prevalence of 87.3%, and 84%, respectively. The effective antibiotic was Imipenem (15.2%). Regarding the high UTI rate in renal transplant recipients from the Middle East, and the significant presence of both Gram negative and Gram positive microorganisms as the most prevalent uropathogens after renal transplantation should be considered when selecting empirical antibacterial therapy.Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus that it disease spreads in over the world. Coronaviruses are single-stranded, positive-sense RNA viruses with a genome of approximately 30 KD, the largest genome among RNA viruses. Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. At this time, there are no specific vaccines or treatments for COVID-19. So, there is an emergency need for vaccines and antiviral strategies. The spike protein is the major surface protein that it uses to bind to a receptor of another protein that acts as a doorway into a human cell. The putative antigenic epitopes may prove effective as novel vaccines for eradication and combating of COV19 infection. A combination of available bioinformatics tools are used to synthesis of such peptides that are important for the development of a vaccine. In conclusion, amino acids 250-800 were selected as effective B cell epitopes, T cell epitopes, and functional exposed amino acids in order to a recombinant vaccine against coronavirus.Plant fungal diseases generate serious losses in the agriculture. The bacteria producing biologically active substances that inhibit the growth of fungal pathogens can be an alternative to the chemicals. The chitinolytic bacteria were isolated from the rhizosphere of wheat (Triticum aestivum L.) and their physiological properties which may be useful in the promotion of plant growth have been investigated. Their chitinases and antifungal activity were studied. The isolates were also tested for indirect growth-promoting traits such as ammonia production, siderophore production, hydrogen cyanide production, and salicylic acid production. Two chitinolytic strains B3 and B5 were identified as Bacillus subtilis and Bacillus sp., respectively. They produced active chitinases on a medium containing shrimp shell powder. The purified chitinases having the molecular weight of 35-45 kDa inhibited the growth of important plant pathogens such as Alternaria alternata, and Fusarium oxysporum. Additionally, the isolates showed the ability to produce a broad range of biological substances promoting the growth of plants.Candida haemulonii species complex (Can. haemulonii sensu stricto, Can. duobushaemulonii and Can. haemulonii var. vulnera) and related species (Can. auris and Can. pseudohaemulonii) have attracted attention due to reduced susceptibility to azoles and amphotericin B. Furthermore, attributes of potential virulence have been recognized in Can. https://www.selleckchem.com/ALK.html haemulonii species complex and Can. auris, like the capability to form biofilm, which represent the most important risk factors for persistent candidemia. However, the relationship between biofilm production and impact on host mortality is still unclear. To evaluate the potential virulence of Can. haemulonii species complex and Can. auris isolates by correlating biofilm production and capacity to kill Caenorhabditis elegans as an in vivo model. In this study, virulence factors were characterized among a total of sixty-six Can. haemulonii species complex and Can. auris isolates to gain insight about virulence traits of these pathogenic yeasts by evaluating the in vitro biofilm production and potential pathogenicity for Cae. elegans, as an in vivo infection model. All clinical isolates tested were biofilm producer, inter- and intra-specific differences on the biofilm forming capacity by the strains were observed. Can. auris and Can. haemuolonii var. vulnera showed similar biofilm production, both higher than Can. haemulonii sensu stricto and Can. duobushaemulonii. Regarding the virulence of the Cae. elegans model, Can. haemulonii species complex and Can. auris isolates were capable of causing infection in Cae. elegans, and our data suggest that the high biofilm production by Can. haemulonii var. vulnera and Can. duobushaemulonii isolates may impact in the pathogenicity caused on Cae. elegans.Mutations affecting SQSTM1 coding for p62 and TANK-Binding Kinase 1 (TBK1) have been implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TBK1 is a serine-threonine kinase that regulates p62's activity as an autophagy receptor via phosphorylation and also has roles in neuroinflammatory signalling pathways. The mechanisms underlying ALS and FTLD pathogenesis as a result of TBK1 mutations are incompletely understood, however, loss of TBK1 function can lead to dysregulated autophagy and mitophagy. Here, we report that an ALS-associated TBK1 variant affecting the kinase domain, p.G175S, is defective in phosphorylation of p62 at Ser-403, a modification critical for regulating its ubiquitin-binding function, as well as downstream phosphorylation at Ser-349. Consistent with these findings, expression of p.G175S TBK1 was associated with decreased induction of autophagy compared to wild type and reduced degradation of the ALS-linked protein TDP-43. Expression of wild type TBK1 increased NF-κB signalling ~300 fold in comparison to empty vector cells, whereas p.