12/06/2024


All 3 types of chars showed strong retention with a poor desorption (6% in average) of OTC in synthetic hydrolyzed urine medium. CBC and NBC demonstrated both physisorption and chemisorption, whereas the OTC removal by BC was solely via physisorption. Nevertheless, CBC biochar demonstrated the best performance in adsorptive removal of OTC and nutrients in hydrolyzed human urine and its capability towards wastewater treatment. As the removal of nutrients were low, the treated urine can possibly be used as a safe fertilizer.Naphthalene sulfonic acids (NSAs) are used extensively in industrial applications as dispersants in dyes, rubbers, and pesticides, and as anti-corrosive agents in coatings, gels, and sealants. https://www.selleckchem.com/products/xl177a.html This study examined the toxicity of three NSA congeners, barium dinonylnaphthalene sulfonate (BaDNS), calcium dinonylnaphthalene sulfonate (CaDNS), and dinonylnaphthalene disulfonic acid (DNDS), to two benthic species, Tubifex tubifex and Hyalella azteca. Two substrates with different levels of organic carbon (sediment [2%] and sand [0%]) were used in toxicity tests. Juvenile production was the most sensitive endpoint for T. tubifex the 28-d EC50s were 3-fold more toxic when present in substrates with no organic carbon (e.g., sand) for all H. azteca endpoints where LC/EC50s could be calculated and for sublethal endpoints for T. tubifex. The organic carbon content of the sediment appears to have acted as a sink and reduced NSA toxicity by decreasing bioavailability. Environmental sediment samples were collected from 12 river sites across southern Ontario. The maximum concentration of CaDNS observed in sediment collected from this region was 2.8 μg/g dw in sediment with 2% organic carbon; 100-fold lower than the lowest EC10 in the current study.Pyrrolizidine alkaloids (PAs) are common phytotoxins. We performed the first comprehensive investigation on PA contamination in Chinese honeys. LC-MS analysis revealed that 58% of 255 honey samples purchased from 17 regions across Mainland China and Taiwan contained PAs with total content ranging over 0.2-281.1 μg/kg. Monocrotaline (from Crotalaria spp), a PA never found in honey in other regions, together with echimidine (Echium plantagineum) and lycopsamine (from Senecio spp.), were three predominant PAs in PA-contaminated Chinese honeys. Further, PAs present in honeys were found to have geographically distinct pattern, indicating possible control of such contamination in future honey production. Moreover, we proposed a new risk estimation approach, which considered both content and toxic potency of individual PAs in honeys, and found that 12% of the PA-contaminated Chinese honeys tested might pose potential health risk. This study revealed a high prevalence and potential health risk of PA contamination in Chinese honeys.The external nitrogen load input caused by human activities exacerbates the eutrophication process of aquatic ecosystems in mining areas, causing water quality problems. However, knowledge of the sources and environmental behavior of nitrate in the surface water of mining areas is still very limited. This study investigated the nitrate content and spatiotemporal variation characteristics of surface water in the Linhuan mining area, identified the sources and transformation processes of nitrate using isotopes and hydrochemistry, and evaluated the contribution rates of different potential nitrate sources based on a Bayesian mixing model. The nitrogen pollution in the surface water in the mining area seriously exceeded class Ⅴ of the Environmental Quality Standard of Surface Water of China (GB3838-2002). The NO3- content ranged from 0.87 to 3.41 mg/L, showing obvious seasonal and spatial differences. Isotope and NO3-/Cl- analysis indicated that nitrate in the subsidence area water (SAW) was mainly derived from chemical fertilizer (NF) and soil organic nitrogen (NS), while nitrate in the mainstream of the Huihe River water (HRW) was mainly derived from manure/sewage (MS). The nitrate in the tributary of the Baohe River water (BRW) was mainly derived from soil NS, and nitrification was a nitrogen conversion pathway in the soil. The results of the Bayesian mixing model showed that the main sources of nitrate in the BRW, HRW and SAW were NF (34.5%), MS (68.8%) and NF (40.8%) in the wet season, and NS (33.4%), MS (70.9%) and NF (58.1%) in the dry season, respectively. The results of this study provide a new integrated method for the identification of nitrate pollution sources in mining areas, and this method can be used to improve the biogeochemical information of nitrogen in the aquatic ecosystems of mining areas and help formulate relevant measures to reduce water nitrogen pollution.Fumonisins (FBs) are mycotoxins that are widely distributed in crops and feed, and ingestion of FBs -contaminated crops is harmful to animal health. Furthermore, it is unknown if Fumonisins B1 (FB1) can cause intestinal toxicity. To investigate FB1-induced intestinal toxicity, mice were treated with 0 or 5 mg/kg FB1 by gavage administration for 42 days. Histopathology indicated that FB1 exposure caused proliferation of intestinal epithelial cells, intestinal villi and epithelial layer shedding, intestinal gland atrophy, and necrosis. Notably, FB1 interfered with nuclear xenobiotic receptors (NXR) homeostasis by regulating the level of aryl hydrocarbon receptor (AHR), constitutive androstane receptor (CAR), pregnane X receptor (PXR) and downstream target genes (CYP450s). Moreover, abnormal expression of inflammatory cytokines (IL-1β, IL-2, IL-4, IL-10, and TNF-α) indicated the occurrence of inflammation. The present study provides new insights regarding the mechanism of FB1-induced intestinal toxicity through activating the NXR system and by triggering inflammatory responses in the intestinal tract in mice.The frequent exposure of bees to a wide variety of fungicides, on crops where they forage, can be considered a stressor factor for these pollinators. The organisms are exposed both to the fungicide active ingredients and to the adjuvants of commercial formulations. All these ingredients are brought to the hive by bee foragers through contaminated pollen and nectar, thus exposing also immature individuals during larval phase. This work aimed to compare the effects of larval exposure to the fungicide pyraclostrobin (active ingredient and commercial formulation) and its influence on the cytotoxicity to midguts in adults, which were inoculated with the Nosema ceranae spores in the post-emergence stage. Under laboratory conditions, Apis mellifera larvae received an artificial diet containing fungicide solution from the third to the sixth day of the feeding phase. One-day-old adult workers ingested 100,000 infectious N. ceranae spores mixed in sucrose solution. Effects on midgut were evaluated through cellular biomarkers of stress and cell death.