12/06/2024


Resistant Pseudomonas aeruginosa isolates are one of the major causes of both hospital-acquired infections (HAIs) and community-acquired infections (CAIs). However, management of P. aeruginosa infections is difficult as the bacterium is inherently resistant to many antibiotics. In this study, a collection of 75 P. #link# aeruginosa clinical isolates from two tertiary hospitals from Athens and Alexnadroupolis in Greece was studied to assess antimicrobial sensitivity and molecular epidemiology. All P. aeruginosa isolates were tested for susceptibility to 11 commonly used antibiotics, and the newly introduced Double Locus Sequence Typing (DLST) scheme was implemented to elucidate the predominant clones. The tested P. aeruginosa isolates presented various resistant phenotypes, with Verona Integron-Mediated Metallo-β-lactamase (VIM-2) mechanisms being the majority, and a new phenotype, FEPR-CAZS, being reported for the first time in Greek isolates. DLST revealed two predominant types, 32-39 and 8-37, and provided evidence for intra-hospital transmission of the 32-39 clone in one of the hospitals. The results indicate that DLST can be a valuable tool when local outbreaks demand immediate tracking investigation with limited time and financial resources.Transition metal sulfides are cheap and efficient catalysts for water splitting to produce hydrogen; these compounds have attracted wide attention. Nickel sulfide (NiS2) has been studied in depth because of its simple preparation process, excellent performance and good stability. Here, we propose a modification to the hydrothermal synthesis method for the fabrication of a highly efficient and stable NiS2 electrocatalyst prepared by two different sulfur sources, i.e., sulfur powder and C3H7NaO3S2 (MPS), for application in hydrogen evolution reactions. https://www.selleckchem.com/products/fatostatin.html obtained NiS2 demonstrated excellent HER performance with an overpotential of 131 mV to drive -10 mA cm-1 in 0.5 M H2SO4 solution with 5mV performance change after 1000 cycles of stability testing. We believe that this discovery will promote the industrial development of nonprecious metal catalysts.In this work, the sensitivity zone of microstructure and temperature for precipitation-strengthened nickel-based superalloys, used for turbine applications in aero-engines, has been firstly established. Heat treatment experiments with different solution temperatures were carried out. The microstructure evolution and creep residual strain sensitivity, low cycle fatigue properties, and tensile properties are analyzed, and the essential reason for the fluctuation of the mechanical properties of nickel-based superalloys was revealed. The main results obtained are as follows following subsolvus solution heat treatment with a temperature of 1020 °C, samples have a high primary γ'I phase content, which is beneficial to low creep residual strain. Above the supersolvus solution temperature of 1040 °C, the creep residual strain value and low cycle fatigue performance fluctuate significantly. The essential reason for the dramatic fluctuation of performance is the presence of γ' phases in different sizes and quantities, especially following the solution heat treatment in the temperature-sensitive zone of the γ'I phase, which is likely to cause huge fluctuations in the microstructure of tertiary γ'III phases. A zone of particular sensitivity in terms of temperature and microstructure for the γ'I phase is proposed. The range of suitable solution temperatures are discussed. In order to maintain stable mechanical properties without large fluctuations, the influence of the sensitivity within this temperature and microstructure zone on the γ' phase should be considered.In this study, crystals of the hybrid layered structure, combined with Fe(III) Spin-Crossover (SCO) complexes with metal-dithiolate anionic radicals, and the precursors with nitrate and iodine counterions, are obtained and characterized. [Fe(III)(3-OMe-Sal2trien)][Ni(dmit)2] (1), [Fe(III)(3-OMe-Sal2trien)]NO3·H2O (2), [Fe(III)(3-OMe-Sal2trien)]I (3) (3-OMe-Sal2trien = hexadentate N4O2 Schiff base is the product of the condensation of triethylenetetramine with 3-methoxysalicylaldehyde; H2dmit = 2-thioxo-1,3-dithiole-4,5-dithiol). Bulk SCO transition was not achieved in the range 2.0-350 K for all three compounds. Alternatively, the hybrid system (1) exhibited irreversible segregation into the spatial fractions of Low-Spin (LS) and High-Spin (HS) phases of the ferric moiety, induced by thermal cycling. Fractioning was studied using both SQUID and EPR methods. Magnetic properties of the LS and HS phases were analyzed in the framework of cooperative interactions with anionic sublattice Anion radical layers Ni(dmit)2 (1), and H-bonded chains with NO3 and I (2,3). LS phase of (1) exhibited unusual quasi-two-dimensional conductivity related to the Arrhenius mechanism in the anion radical layers, ρ||c = 2 × 105 Ohm·cm and ρ⟂c = 7 × 102 Ohm·cm at 293 K. Ground spin state of the insulating HS phase was distinctive by ferromagnetically coupled spin pairs of HS Fe3+, S = 5/2, and metal-dithiolate radicals, S = 1/2.Building an interactive environment during learning experience is sometimes hindered by student numbers in class, their sociocultural differences and limited teaching time, which may reduce student engagement. In this study we provided a super blended teaching and learning model by hybridising Classroom Response System (CRS) with Flipped Classroom (FC) and Team-Based Learning (TBL). CRS allowed learners to use their smart devices (e.g., phones, tablets and laptops) to respond to a variety of numerical, multiple-choice, short-answer and open ended questions posed during live classes and encouraged them to engage with classroom activities. Our Flipped-CRS (F-CRS) approach required the students to preview the e-learning material and watch the recorded lectures before the sessions and apply their knowledge within the session, either individually or as teams, by answering questions using TurningPoint CRS software. Learners provided positive feedback regarding F-CRS and the application of super blended teaching and learning model demonstrated a substantial increase in student collaboration and enhanced their motivation, engagement, attendance and academic performance, especially while using F-CRS approach in teams.