This study utilized laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify gadolinium in the hair of autopsy cases that had received gadolinium-based contrast agents (GBCAs) before death. Consecutive autopsy cases were reviewed for GBCA injections and subjects who received a single type of GBCA in the year before death were included. Hair samples were analyzed using LA-ICP-MS as a line scan technique and parameters were optimized to maximize instrument sensitivity, accuracy, and precision. Linear regression analyses between hair measures and gadolinium dose were executed. LA-ICP-MS analysis produced a time-resolved record of GCBA exposure, with the position of the gadolinium peak maxima along the hair shaft providing a good estimate for the day that GBCA injection occurred (R2 = 0.46; p = 0.0022); however, substantial within and between subject variation in the position of the GBCA peak was observed. Average area under the curve for gadolinium peaks in the hair samples was a better predictor of gadolinium dose (R2 = 0.41; p = 0.0046), compared to the average of peak maxima concentration. Correlation between area under the curve and dose suggests that LA-ICP-MS analysis of hair may be an effective method to evaluate gadolinium levels in subjects in vivo after exposure to GBCAs. This study demonstrates that analysis of human hair using techniques with high spatial resolution such as LA-ICP-MS has excellent potential to reveal time-dependent signatures of past exposures.A novel stability-enhanced graphene quantum dot (GQD)-decorated epidermal growth factor receptor (EGFR) cell membrane chromatography was constructed to study the potential application of GQDs in bioaffinity chromatography, and to screen active components acting on EGFR from traditional Chinese medicine (TCM). The carboxyl groups on the surface of GQDs reacted with the amino groups of the amino-silica gel (SiO2-NH2) to form a covalent bond, thereby preparing the GQD-decorated silica gel (SiO2-GQDs). The EGFR cell membrane was further immobilized on the SiO2-GQDs through the same covalent binding method to obtain the GQD-decorated cell membrane stationary phase (SiO2-GQDs-CMSP). In this way, the cell membrane was firmly immobilized on the decorated silica carrier. The life span and stability of the GQD-decorated cell membrane chromatographic (SiO2-GQDs-CMC) column were both enhanced, and the optimal immobilization conditions of the EGFR cell membrane were also determined. This model was then verified by establishing a SiO2-GQDs-CMC online liquid chromatography-ion trap-time-of-flight (LC-IT-TOF) system to screen possible active components in Peucedanum praeruptorum Dunn. As a result, praeruptorin B (Pra-B) was screened out, and its inhibitory effect against EGFR cell growth was evaluated by the cell counting kit-8 (CCK-8) assay. Molecular docking assay was also conducted to further estimate the interaction between Pra-B and EGFR. Overall, this research indicated that GQDs may be a promising nanomaterial to be used in prolonging the life span of the CMC column, and Pra-B could be a potential EGFR inhibitor so as to treat cancer.A wide range of micropollutants can be monitored with non-targeted screening; however, the quantification of the newly discovered compounds is challenging. Transformation products (TPs) are especially problematic because analytical standards are rarely available. Here, we compared three quantification approaches for non-target compounds that do not require the availability of analytical standards. The comparison is based on a unique set of concentration data for 341 compounds, mainly pesticides, pharmaceuticals, and their TPs in 31 groundwater samples from Switzerland. The best accuracy was observed with the predicted ionization efficiency-based quantification, the mean error of concentration prediction for the groundwater samples was a factor of 1.8, and all of the 74 micropollutants detected in the groundwater were quantified with an error less than a factor of 10. The quantification of TPs with the parent compounds had significantly lower accuracy (mean error of a factor of 3.8) and could only be applied to a fraction of the detected compounds, while the mean performance (mean error of a factor of 3.2) of the closest eluting standard approach was similar to the parent compound approach.Neospora caninum is a protozoan that can cause reproductive problems in several animal species. Although N. caninum infection has been reported in swine, the pathogenesis and clinical signs are not fully known in this species. The objective of this work was to evaluate the effect of experimental infection with tachyzoites of the N. caninum strain Nc1 in swine matrices at different stages of gestation. For that purpose, 12 gilts, seronegative for N. caninum and T. gondii, were selected and allocated into four groups of three animals each. Animals in group A were not inoculated (control) and animals in groups B, C, and D were inoculated intravenously with of 2.9 × 107 tachyzoites, 30 days before conception, and at 45 and 90 days of gestation, respectively. Temperature, heart rate, blood, saliva, and vaginal mucus samples from the animals were collected periodically until the time of delivery for the investigation of IgG and IgM antibodies against N. caninum using IFAT and PCR to detect the parasite DNA. All gilts sero-converted from 5 and 7 DPI (days postinoculation) to IgM and IgG, respectively. Two gilts showed hypothermia on the 5th and 7th DPI, and five inoculated animals had leukocytosis on the 7th DPI. It was possible to detect DNA of N. caninum in samples of saliva (33/84), vaginal mucus (17/84), and blood (2/84). Based on serology (IgM) and PCR, three animals in group B showed evidence of reappearance of the infection during pregnancy. It is concluded that N. caninum can cause clinical signs in infected swine females, in addition to indicating saliva as a suitable diagnostic biological material for the detection of N. caninum DNA in this animal species.Canine vector-borne diseases (CVBDs) are highly prevalent in tropical and subtropical countries, mainly due to favorable climate conditions and reduced adoption of preventive measures. This study aimed to provide a comprehensive overview on the prevalence of CVBDs in Iran and Pakistan where limited data are available. Blood samples were collected from 403 dogs from six provinces in Iran and Pakistan to assess the presence of pathogen DNA (i.e., Anaplasma spp., Coxiella burnetii, Ehrlichia spp., Rickettsia spp., Babesia spp., Hepatozoon spp., filarioids, and Leishmania spp.). Sera were also screened by an immunofluorescence antibody test for the detection of antibodies against Leishmania infantum. In total, 46.9% of dogs scored positive to Hepatozoon canis being the most frequently detected (41.4%), followed by Anaplasma platys (6.4%), Ehrlichia canis (3.4%), Rickettsia spp. https://www.selleckchem.com/products/3-typ.html (2.2%), Babesia vogeli (1.0%), and L. infantum (0.3%). A seroprevalence of 9.6% to anti-L. infantum IgG was also recorded. Data reported herein demonstrate that dogs from Iran and Pakistan are at a high risk of CVBDs, particularly of canine hepatozoonosis.