A straightforward synthesis of a series of previously unknown N-(1,2,5-oxadiazolyl)hydrazones through the diazotization/reduction/condensation cascade of amino-1,2,5-oxadiazoles was accomplished. The described protocol was suitable for a wide array of target hydrazones, which were prepared in good to high yields under smooth reaction conditions with very good functional group tolerance. Importantly, the presented approach unveils a direct route to in situ generation of previously inaccessible (1,2,5-oxadiazolyl)hydrazines. In addition, a first example of the ionic structure incorporating a protonated hydrazone motif linked to the 1,2,5-oxadiazole 2-oxide subunit was synthesized, indicating the stability of prepared compounds toward acid-promoted hydrolysis. Overall, this method provides a direct access to the isosteric analogues of drug candidates for treatment of various neglected diseases, thus enabling their potential application in medicinal chemistry and drug design.In this study, the UV photodissociation of gas phase ion pairs of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [emim]+[tf2n]-, is shown to proceed primarily through radical intermediates. [emim]+[tf2n]- ion pairs have been shown previously to undergo two-photon-dependent dissociation, but the mechanisms of this have not been probed in detail. By employing a two-laser pump probe spectroscopy and time-dependent density functional theory (TD-DFT) calculations, we have illustrated that one of the major UV photodissociation pathways in [emim]+[tf2n]- ion pairs is an intermolecular electron transfer wherein the anion transfers an electron to the cation resulting in two neutral open-shelled products. These products were observable for at least 1.6 μs post photodissociation, the experimental limit, via detection of the [emim]+ cation. This data demonstrates that the likely photoproducts of [emim]+[tf2n]- UV photodissociation are two neutral species that separate spatially, demonstrated through lack of observed relaxation pathways such as electron recombination. TD-DFT and frontier molecular orbital analysis calculations at the MN15/6-311++G(d,p) level are employed to aid in identifying excited state characteristics and support the interpretations of the experimental data. The energetic onset of the intermolecular electron transfer is consistent with previously observed [emim]+[tf2n]- absorption spectra in the bulk and gas phases. The similarities between bulk and gas phase UV spectra imply that this electron-transfer pathway may be a major photodissociation channel in both phases.An environmentally friendly electrochemical approach for iodoamination of various indole derivatives with a series of unactivated amines, amino acid derivatives, and benzotriazoles (more than 80 examples) has been developed. This strategy was further applied in late-stage functionalization of natural products and pharmaceuticals and gram-scale synthesis and radiosynthesis of 131I-labeled compounds. Fundamental insights into the mechanism of the reaction based on control experiments, density functional theory calculation, and cyclic voltammetry are provided.Advances in electron-beam lithography (EBL) have fostered the prominent development of functional micro/nanodevices. Nonetheless, traditional EBL is predominantly applicable to large-area planar substrates and often suffers from chemical contamination and complex processes for handling resists. This paper reports a streamlined and ecofriendly approach to implement e-beam patterning on arbitrary shaped substrates, exemplified by solvent-free nanofabrication on optical fibers. The procedure starts with the vapor deposition of water ice as an electron resist and ends in the sublimation of the ice followed by a "blow-off" process. Without damage and contamination from chemical solvents, delicate nanostructures and quasi-3D structures are easily created. A refractive index sensor is further demonstrated by decorating plasmonic nanodisk arrays on the end face of a single-mode fiber. Our study provides a fresh perspective in EBL-based processing, and more exciting research exceeding the limits of traditional approaches is expected.The technological advancement of data storage is reliant upon the continuous development of faster and denser memory with low power consumption. Recent progress in flash memory has focused on increasing the number of bits per cell to increase information density. In this work an optical multilevel spin bit, based on the chiral induced spin selectivity (CISS) effect, is developed using nanometer sized chiral quantum dots. A double quantum dot architecture is adsorbed on the active area of a Ni based Hall sensor and a nine-state readout is achieved.Electronic structure calculations, in particular the computation of the ground state energy, lead to challenging problems in optimization. These problems are of enormous importance in quantum chemistry for calculations of properties of solids and molecules. Minimization methods for computing the ground state energy can be developed by employing a variational approach, where the second-order reduced density matrix defines the variable. This concept leads to large-scale semidefinite programming problems that provide a lower bound for the ground state energy. Upper bounds of the ground state energy can be calculated for example with the Hartree-Fock method or numerically more exact for a given basis set by full CI. However, Nakata et al. ( J. Chem. Phys.200111482828292) observed that due to numerical errors the semidefinite solver produced erroneous results with a lower bound significantly larger than the full CI energy. https://www.selleckchem.com/products/bay-11-7085.html For the LiH, CH-, NH-, OH, OH-, and HF molecules violations within one mhartree were observed. We applied the software VSDP which takes all numerical errors due to floating-point arithmetic operations into consideration. For two test libraries VSDP provides tight rigorous error bounds lower than full CI energies reported with an accuracy of 0.1 to 0.01 mhartree. Only little computation work must be spent in order to compute close rigorous error bounds for the ground state energy.