Peripheral intravenous catheter failure is a significant concern in the clinical setting. We investigated the effectiveness of care protocols, including an ultrasonographic "pre-scan" for selecting a large-diameter vein before catheterization, a "post-scan" for confirming the catheter tip position after catheterization with ultrasonography, and the use of a flexible polyurethane catheter to reduce the mechanical irritation that contributes to the incidence of catheter failure. This intervention study was a non-randomized controlled trial to investigate the effectiveness of the abovementioned care protocols, the effects of which were compared to the outcomes in the control group, which received conventional care. For both groups, participants were selected from patients in two wards at the University of Tokyo in Japan between July and November 2017. Inverse probability score-based weighted methods (IPW) using propensity score were used to estimate the effectiveness of care protocols. The primary outcome was catheter failure, which was defined as accidental and unplanned catheter removal. We used Kaplan-Meier survival curves to compare rates of time until catheter failure. We analysed 189 and 233 catheters in the intervention and control groups, respectively. In the control group, 68 catheters (29.2%) were determined to have failed, whereas, in the intervention group, only 21 catheters (11.1%) failed. There was a significant difference between each group regarding the ratio of catheter failure adjusted according to IPW (p = 0.003). The relative risk reduction of the intervention for catheter failure was 0.60 (95% CI 0.47-0.71). Care protocols, including assessment of vein diameter, vein depth, and catheter tip location using ultrasound examination for reducing mechanical irritation is a promising method to reduce catheter failure incidence.A mutant form of the ataxin-1 protein with an expanded polyglutamine (polyQ) tract is the underlying cause of the inherited neurodegenerative disease spinocerebellar ataxia 1 (SCA1). In probing the biophysical features of the nuclear bodies (NBs) formed by polyQ-ataxin-1, we defined ataxin-1 NBs as spherical liquid protein/RNA droplets capable of rapid fusion. We observed dynamic exchange of the ataxin-1 protein into these NBs; notably, cell exposure to a pro-oxidant stress could trigger a transition to slower ataxin-1 exchange, typical of a hydrogel state, which no longer showed the same dependence on RNA or sensitivity to 1,6-hexanediol. Furthermore, we could alter ataxin-1 exchange dynamics either through modulating intracellular ATP levels, RNA helicase inhibition, or siRNA-mediated depletion of select RNA helicases. Collectively, these findings reveal the tunable dynamics of the liquid RNA/protein droplets formed by polyQ-ataxin-1.An amendment to this paper has been published and can be accessed via a link at the top of the paper.The sustainable exploitation of small pelagic fish populations, characterized by short life span and early age at first reproduction, is typically more influenced by the success of annual recruitment rather than by fishing mortality. Recruitment strength, in turn, is related to the high environmental variability characterizing the pelagic fish habitats, able to strongly affect the survival of early stages, from hatching to recruitment. Here, we consider the case study of anchovy (Engraulis encrasicolus) stock in the Strait of Sicily (Central Mediterranean). The interannual fluctuations exhibited over an 18-year long period by this fish population was found to be mainly linked to surface circulation patterns, as far as they are able to control retention/dispersal processes of larval stages. https://www.selleckchem.com/products/2-2-2-tribromoethanol.html We firstly used Lagrangian simulations to reproduce the fate of anchovy early stages during their planktonic phase. Larval retention indices constructed from the output of the simulations were able alone to explain a large proportion of variance (up to 70%) in yearly biomass of the anchovy population, outclassing the other environmental factors considered in this study. Such results are relevant for fisheries management, for all fish stocks characterized by potentially high vulnerability of early life stages.While single cell RNA sequencing (scRNA-seq) is invaluable for studying cell populations, cell-surface proteins are often integral markers of cellular function and serve as primary targets for therapeutic intervention. Here we propose a transfer learning framework, single cell Transcriptome to Protein prediction with deep neural network (cTP-net), to impute surface protein abundances from scRNA-seq data by learning from existing single-cell multi-omic resources.A discrete-element based model of elastic-plastic materials with non-ideal plasticity and with an account of both cohesive and adhesive interactions inside the material is developed and verified. Based on this model, a detailed study of factors controlling the modes of adhesive wear is performed. Depending on the material and loading parameters, we observed three main modes of wear slipping, plastic grinding, cleavage, and breakaway. We find that occurrence of a particular mode is determined by the combination of two dimensionless material parameters (1) the ratio of the adhesive stress to the pure shear strength of the material, and (2) sensitivity parameter of material shear strength to local pressure. The case study map of asperity wear modes in the space of these parameters has been constructed. Results of this study further develop the findings of the widely discussed studies by the groups of J.-F. Molinari and L. Pastewka.The industrial synthesis of ammonia (NH3) using iron-based Haber-Bosch catalyst requires harsh reaction conditions. Developing advanced catalysts that perform well at mild conditions ( less then 400 °C, less then 2 MPa) for industrial application is a long-term goal. Here we report a Co-N-C catalyst with high NH3 synthesis rate that simultaneously exhibits dynamic and steady-state active sites. Our studies demonstrate that the atomically dispersed cobalt weakly coordinated with pyridine N reacts with surface H2 to produce NH3 via a chemical looping pathway. Pyrrolic N serves as an anchor to stabilize the single cobalt atom in the form of Co1-N3.5 that facilitates N2 adsorption and step-by-step hydrogenation of N2 to *HNNH, *NH-NH3 and *NH2-NH4. Finally, NH3 is facilely generated via the breaking of the *NH2-NH4 bond. With the co-existence of dynamic and steady-state single atom active sites, the Co-N-C catalyst circumvents the bottleneck of N2 dissociation, making the synthesis of NH3 at mild conditions possible.