licators.Adeno-associated viral vectors (AAV) are efficient engineered tools for delivering genetic material into host cells. The commercialization of AAV-based drugs must be accompanied by the development of appropriate quality control (QC) assays. Given the potential risk of co-transfer of oncogenic or immunogenic sequences with therapeutic vectors, accurate methods to assess the level of residual DNA in AAV vector stocks are particularly important. https://www.selleckchem.com/products/CP-690550.html An assay based on high-throughput sequencing (HTS) to identify and quantify DNA species in recombinant AAV batches is developed. Here, it is shown that PCR amplification of regions that have a local GC content >90% and include successive mononucleotide stretches, such as the CAG promoter, can introduce bias during DNA library preparation, leading to drops in sequencing coverage. To circumvent this problem, SSV-Seq 2.0, a PCR-free protocol for sequencing AAV vector genomes containing such sequences, is developed. The PCR-free protocol improves the evenness of the rAAV genome coverage and consequently leads to a more accurate relative quantification of residual DNA. HTS-based assays provide a more comprehensive assessment of DNA impurities and AAV vector genome integrity than conventional QC tests based on real-time PCR and are useful methods to improve the safety and efficacy of these viral vectors.Mesenchymal stromal cells (MSCs) are nonhematopoietic cells that have been clinically explored as investigational cellular therapeutics for tissue injury regeneration and immune-mediated diseases. Their pharmaceutical properties arise from activation of endogenous receptors and transcription factors leading to a paracrine effect which mirror the biology of progenitors from which they arise. The aryl hydrocarbon receptor (AhR) is a transcription factor that has been extensively studied as an environmental sensor for xenobiotics, but recent findings suggest it can modulate immunological functions. Both genetic and pharmacological investigations revealed that MSCs express AhR and that it plays roles in inflammation, immunomodulation, and mesodermal plasticity of endogenous MSCs. Further, AhR has been shown to interact with key signaling cascades associated with these conditions. Therefore, AhR has potential to be an attractive target in both endogenous and culture-adapted MSCs for novel therapeutics to treat inflammation and other age-related disorders.Fill et al. (Global Change Biology, 25, 3562-3569, 2019) reported significant increases in dry season length over the past 120 years in the Southeast US, suggesting increased wildfire risk in a region associated with a frequent fire regime. We identified two flaws that call into question the findings and their relevance to regional wildfire risk. First, with the exception of Florida, there is little evidence for a climatologically meaningful 'dry season' in the Southeast because most areas experience relatively evenly distributed monthly precipitation. Second, the sampling method used to derive Cumulative Rainfall Anomalies does not appear to actually reflect a bootstrap sample as described.The opportunistic pathogen Pseudomonas aeruginosa, one of the most prevalent species in infections of the cystic fibrosis lung, produces a range of secondary metabolites, among them the respiratory toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one (2-heptyl-4-hydroxyquinoline N-oxide, HQNO). Cultures of the emerging cystic fibrosis pathogen Mycobacteroides abscessus detoxify HQNO by methylating the N-hydroxy moiety. In this study, the class I methyltransferase MAB_2834c and its orthologue from Mycobacterium tuberculosis, Rv0560c, were identified as HQNO O-methyltransferases. The P. aeruginosa exoproducts 4-hydroxyquinolin-2(1H)-one (DHQ), 2-heptylquinolin-4(1H)-one (HHQ), and 2-heptyl-3-hydroxyquinolin-4(1H)-one (the 'Pseudomonas quinolone signal', PQS), some structurally related (iso)quinolones, and the flavonol quercetin were also methylated; however, HQNO was by far the preferred substrate. Both enzymes converted a benzimidazole[1,2-a]pyridine-4-carbonitrile-based compound, representing the scaffold of antimycobacterial substances, to an N-methylated derivative. We suggest that these promiscuous methyltransferases, newly termed as heterocyclic toxin methyltransferases (Htm), are involved in cellular response to chemical stress and possibly contribute to resistance of mycobacteria toward antimicrobial natural compounds as well as drugs. Thus, synthetic antimycobacterial agents may be designed to be unamenable to methyl transfer. ENZYMES S-adenosyl-l-methionine2-heptyl-1-hydroxyquinolin-4(1H)-one O-methyl-transferase, EC 2.1.1.Reef-building corals, like many long-lived organisms, experience environmental change as a combination of separate but concurrent processes, some of which are gradual yet long-lasting, while others are more acute but short-lived. For corals, some chronic environmental stressors, such as rising temperature and ocean acidification, are thought to induce gradual changes in colonies' vital rates. Meanwhile, other environmental changes, such as the intensification of tropical cyclones, change the disturbance regime that corals experience. Here, we use a physiologically structured population model to explore how chronic environmental stressors that impact the vital rates of individual coral colonies interact with the intensity and magnitude of disturbance to affect coral population dynamics and cover. We find that, when disturbances are relatively benign, intraspecific density dependence driven by space competition partially buffers coral populations against gradual changes in vital rates. However, the impact of chronic stressors is amplified in more highly disturbed environments, because disturbance weakens the buffering effect of space competition. We also show that coral cover is more sensitive to changes in colony growth and mortality than to external recruitment, at least in open populations, and that space competition and size structure mediate the extent and pace of coral population recovery following a large-scale mortality event. Understanding the complex interplay among chronic environmental stressors, mass-mortality events, and population size structure sharpens our ability to manage and to restore coral-reef ecosystems in an increasingly disturbed future.