11/14/2024


cted in the case of SNPs in the promoters of the human Y-chromosome genes and which can go far beyond changes in male fertility.Lung cancer is one of the most common types of cancer in the world. Although the mechanism of lung cancer is still unknown, a large number of studies have found a link between gene polymorphisms and the risk of lung cancer. The tumor suppressor p53 plays a crucial role in maintaining genomic stability and tumor prevention. MDM2 is a critical regulator of the p53 protein. Despite the importance of p53 pathway in cancer, data on the contribution of SNPs of TP53 (rs1042522) and MDM2 (rs2279744) to the development of lung cancer are very contradictory. A metaanalysis that collects quantitative data from individual studies and combines their results has the advantage of improving accuracy, providing reliable estimates, and resolving those issues in which studies on individual associations are not effective enough. The aim of this study was to determine whether the TP53 (rs1042522) and MDM2 (rs2279744) polymorphisms confer susceptibility to lung cancer. A meta-analysis was conducted on the associations between the TP53 (rs1042522) and MDM2 (rs2279744) polymorphisms and lung cancer. A total of 51 comparison studies including 25,366 patients and 25,239 controls were considered in this meta-analysis. The meta-analysis showed no association between lung cancer and MDM2 (rs2279744) under any model. A noteworthy association of TP53 (rs1042522) with susceptibility to lung cancer in overall pooled subjects was observed under three different models (allele contrast, homozygote contrast (additive) and dominant). Stratification by ethnicity indicated an association between the TP53 (rs1042522) and lung cancer in Asians and Caucasians. This meta-analysis demonstrates that the TP53 (rs1042522), but not MDM2 (rs2279744) polymorphism may confer susceptibility to lung cancer.The DISC1 (disrupted in sсhizophrenia 1) gene is associated with brain dysfunctions, which are involved in a variety of mental disorders, such as schizophrenia, depression and bipolar disorder. This is the first study to examine the immune parameters in Disc1-Q31L mice with a point mutation in the second exon of the DISC1 gene compared to mice of the C57BL/6NCrl strain (WT, wild type). A flow cytometry assay has shown that intact Disc1- Q31L mice differ from the WT strain by an increase in the percentage of CD3+ T cells, CD3+CD4+ Т helper cells and CD3+CD4+CD25+ T regulatory cells and a decrease in CD3+CD8+ T cytotoxic/suppressor cells in the peripheral blood. A multiplex analysis revealed differences in the content of cytokines in the brain structures of Disc1-Q31L mice compared to WT mice. The content of pro-inflammatory cytokines was increased in the frontal cortex (IL-6, IL- 17 and IFNγ) and striatum (IFNγ), and decreased in the hippocampus and hypothalamus. At the same time, the levels of IL-1β were decreased in all structures being examined. In addition, the content of anti-inflammatory cytokines IL-4 was increased in the frontal cortex, while IL-10 amount was decreased in the hippocampus. Immune response to sheep red blood cells analyzed by the number of antibody-forming cells in the spleen was higher in Disc1-Q31L mice at the peak of the reaction than in WT mice. Thus, Disc1-Q31L mice are characterized by changes in the pattern of cytokines in the brain structures, an amplification of the peripheral T-cell link with an increase in the content of the subpopulations of CD3+CD4+ T helpers and CD3+CD4+CD25+ T regulatory cells, as well as elevated immune reactivity to antigen in the spleen.Pyrenophora tritici-repentis is a causative agent of tan spot in wheat. In recent years, there has been an increasing spread and harmfulness of wheat tan spot. The aim of the research was to study the racial composition of the P. https://www.selleckchem.com/products/ABT-737.html tritici-repentis population in the Republic of Kazakhstan. A collection of 30 common wheat accessions, including promising lines and cultivars from Kazakhstan and CIMMYT-ICARDA, was assessed for resistance to P. tritici- repentis in a greenhouse and characterized using the Xfcp623 molecular marker, diagnostic for the Tsn1 gene. Monosporic isolates of P. tritici-repentis isolated from the southeastern region were assigned to certain races based on the manifestation of symptoms of necrosis/chlorosis on standard differentials (Glenlea, 6B662, 6B365). Five races of P. tritici-repentis have been identified, including races 1, 2, 3, 7 and 8. It has been shown that races 1 and 8 of P. tritici-repentis are dominant. As a result of the analysis of the frequency of occurrence of the P. tritici-repentis races, it was found that race 1 (50 %) producing Ptr ToxA and Ptr ToxB and race 8 (35 %) producing Ptr ToxA, Ptr ToxB and Ptr ToxC turned out to be dominant. From a practical point of view, of greatest interest are 16 wheat samples, which demonstrated resistance to race 1 and confirmed insensitivity to Ptr ToxA in a molecular screening. These include eight Kazakhstani (4_PSI, 10204_2_KSI, 10204_3_KSI, 10205_2_KSI, 10205_3_KSI, 605_SP2, 632_SP2, Dana) and seven foreign lines (KR11-20, KR11-03, KR11-9014, 11KR-13, KR11-9025, KR12-07, GN-68/2003). The results of this study are of interest in wheat breeding programs for tan spot resistance.The significant worldwide increase in obesity has become a major health problem. Excess adiposity has been extensively linked to inflammation. Recently, studies have shown that dietary intake and microbiota dysbiosis can affect the health of the gut and lead to low-grade systemic inflammation, worsening the state of obesity and further exacerbating inflammation. The latter is shown to decrease iron status and potentially increase the risk of anemia by inhibiting iron absorption. Hence, anemia of obesity is independent of iron intake and does not properly respond to increased iron ingestion. Therefore, countries with a high rate of obesity should assess the health impact of fortification and supplementation with iron due to their potential drawbacks. This review tries to elucidate the relation between inflammation and iron status to better understand the etiology of anemia of obesity and chronic diseases and wisely design any dietary or medical interventions for the management of anemia and/or obesity.