11/12/2024


at the time of embryo implantation, there is loss of E-Cad along with the gain of N-Cad and SNAIL expression suggestive of EMT in the luminal epithelium. This EMT is possibly driven by embryonic stimuli as treatment with estrogen and progesterone did not lead to the gain of N-Cad expression in the mouse endometrium in vivo or in human endometrial epithelial cells in vitro. In conclusion, the present study demonstrates that steroid hormones directly affect E-Cad sorting in the endometrial epithelium which undergo EMT in response to embryonic stimuli.Overexpression of HER2 is associated with cancer phenotypes, such as proliferation, survival, metastasis and angiogenesis, and has been validated as a therapeutic target. However, only a portion of patients benefited from anti-HER2 treatments, and many would develop resistance. A more effective HER2 targeted therapeutics is needed. Here, we adopted a prodrug system that uses 5-fluorocytosine (5-FC) and a HER2-targeting scaffold protein, ZHER22891, fused with yeast cytosine deaminase (Fcy) to target HER2-overexpressing cancer cells and to convert 5-FC to a significantly more toxic chemotherapeutic, 5-fluorouracil (5-FU). We cloned the coding gene of ZHER22891 and fused with those of ABD (albumin-binding domain) and Fcy. The purified ZHER22891-ABD-Fcy fusion protein specifically binds to HER2 with a Kd value of 1.6 nM ZHER22891-ABD-Fcy binds to MDA-MB-468, SKOV-3, BT474, and MC38-HER2 cells, which overexpress HER2, whereas with a lower affinity to HER2 non-expresser, MC38. Correspondingly, the viability of HER2-expressing cells was suppressed by relative low concentrations of ZHER22891-ABD-Fcy in the presence of 5-FC, and the IC50 values of ZHER22891-ABD-Fcy for HER2 high-expresser cells were approximately 10-1000 fold lower than those of non-HER2-targeting Fcy, and ABD-Fcy. This novel prodrug system, ZHER22891-ABD-Fcy/5-FC, might become a promising addition to the existing class of therapeutics specifically target HER2-expressing cancers.The skin is exposed to various external stimuli. Keratinocytes, which are the main cell type in the epidermis, interact with peripheral sensory neurons and modulate neuronal activity. Recent studies have revealed that keratinocytes play crucial roles in nociception, and that ATP is one of the main mediators of signal transduction from keratinocytes to sensory neurons. However, no quantitative cellular level analyses of ATP-mediated information flow from keratinocytes to sensory dorsal root ganglion (DRG) neurons have been conducted. In this study, we performed simultaneous imaging of cell surface ATP and intracellular Ca2+ signals using both iATPSnFR, a genetically encoded ATP probe localized to the outside of the cell membrane, and the Ca2+ probe, Fura-red. Upon mechanical stimulation of the keratinocyte with a glass needle, an increase in Ca2+ and ATP release were observed around the stimulated area, and these phenomena were positively correlated. In cultured DRG neurons and keratinocytes neighboring the stimulated keratinocyte, increased intracellular Ca2+ concentration and levels of cell surface ATP on the side closer to the stimulated cell were detected. The ratio of Ca2+ response to input ATP signal was significantly larger in DRG neurons than in keratinocytes. We found that DRG neurons were more sensitive to ATP than keratinocytes, and therefore, only DRG neurons responded to ATP at 1 μM or lower concentrations when in co-culture with keratinocytes. https://www.selleckchem.com/products/alc-0159.html Moreover, signals caused by moderate mechanical stimulation of keratinocytes were transmitted predominantly to DRG neurons. These findings would be important in the further determination of the detailed mechanism of nociception in the epidermis.CYP76AH1 is the key enzyme in the biosynthesis pathway of tanshinones in Salvia miltiorrhiza, which are famous natural products with activities against various heart diseases and others. CYP76AH1 is a membrane-associated typical plant class II cytochrome P450 enzyme and its catalytic mechanism has not to be clearly elucidated. Structural determination of eukaryotic P450 enzymes is extremely challenging. Recently, we solved the crystal structures of CYP76AH1 and CYP76AH1 in complex with its natural substrate miltiradiene. The structure of CYP76AH1 complexed with miltiradiene is the first plant cytochrome P450 structure in complex with natural substrate. The studies revealed a unique array pattern of amino acid residues, which may play an important role in orienting and stabilizing the substrate for catalysis. This work would provide structural insights into CYP76AH1 and related P450s and the basis to efficiently improve tanshinone production by synthetic biology techniques.Telomerase is a reverse transcriptase that catalyzes the addition of telomeric repeated DNA onto the 3' ends of linear chromosomes. Telomerase inhibition was broadly used for cancer therapeutics. Here, six antisense oligonucleotides were designed to regulate TERT mRNA alternative splicing and protein translation. To pursue a better stability in vitro, we chemically modified the oligonucleotides into phosphorothioate (PS) backbone and 2'-O-methoxyethyl (2'-MOE PS) version and phosphoroamidate morpholino oligomer (PMO) version. The oligonucleotides were transfected into HEK 293T cells and HeLa cells, and the mRNA expression, protein level and catalytic activity of telomerase were determined. We found the Int8 notably promoted hTERT mRNA exon 7-8 skipping, which greatly reduced telomerase activity, and the 5'-UTR treatment led to an obvious protein translation barrier and telomerase inhibition. These results demonstrate the potential of antisense oligonucleotide drugs targeting hTERT for antitumor therapy. Moreover, two specific antisense oligonucleotides were identified to be effective in reducing telomerase activity.Skeletal muscle is known to regulate bone homeostasis through muscle-bone interaction, although factors that control this activity remain unclear. Here, we newly established Smad3-flox mice, and then generated skeletal muscle-specific Smad2/Smad3 double conditional knockout mice (DcKO) by crossing Smad3-flox with skeletal muscle-specific Ckmm Cre and Smad2-flox mice. We show that immobilization-induced gastrocnemius muscle atrophy occurring due to sciatic nerve denervation was partially but significantly inhibited in DcKO mice, suggesting that skeletal muscle cell-intrinsic Smad2/3 is required for immobilization-induced muscle atrophy. Also, tibial bone atrophy seen after sciatic nerve denervation was partially but significantly inhibited in DcKO mice. Bone formation rate in wild-type mouse tibia was significantly inhibited by immobilization, but inhibition was abrogated in DcKO mice. We propose that skeletal muscle regulates immobilization-induced bone atrophy via Smad2/3, and Smad2/3 represent potential therapeutic targets to prevent both immobilization-induced bone and muscle atrophy.
Cell-free heme-containing proteins mediate endothelial injury in a variety of disease states including subarachnoid hemorrhage and sepsis by increasing endothelial permeability. Inflammatory cells are also attracted to sites of vascular injury by monocyte chemotactic protein 1 (MCP-1) and other chemokines. We have identified a novel peptide hormone, adropin, that protects against hemoglobin-induced endothelial permeability and MCP-1-induced macrophage migration.

Human microvascular endothelial cells were exposed to cell-free hemoglobin (CFH) with and without adropin treatment before measuring monolayer permeability using a FITC-dextran tracer assay. mRNA and culture media were collected for molecular studies. We also assessed the effect of adropin on macrophage movement across the endothelial monolayer using an MCP-1-induced migration assay.

CFH exposure decreases adropin expression and increases paracellular permeability of human endothelial cells. Treating cells with synthetic adropin protects against the increased permeability observed during the natural injury progression. Cell viability was similar in all groups and Hmox1 expression was not affected by adropin treatment. MCP-1 potently induced macrophage migration across the endothelial monolayer and adropin treatment effectively reduced this phenomenon.

Endothelial injury is a hallmark of many disease states. Our results suggest that adropin treatment could be a valuable strategy in preventing heme-mediated endothelial injury and macrophage infiltration. Further investigation of adropin therapy in animal models and human tissue specimens is needed.
Endothelial injury is a hallmark of many disease states. Our results suggest that adropin treatment could be a valuable strategy in preventing heme-mediated endothelial injury and macrophage infiltration. Further investigation of adropin therapy in animal models and human tissue specimens is needed.Villitis of unknown etiology (VUE) is characterized by lympho-histiocytic infiltrates, which are predominant within the villous stroma. VUE can be of low grade i.e. affecting less than 10 contiguous villi or high grade with either patchy or diffuse subgroups (the later concerning more than 30 % of distal villi). Several other placental lesions could be associated with VUE, in particular in diffuse subgroups, such as diffuse perivillous fibrin deposition and chronic intervillositis. One of the most characteristic features of VUE is the late onset of fetal growth restriction after 32 weeks of gestation, and earlier detection of villitis should first raise an infectious origin. High grade VUE has been associated with fetal growth restriction, prematurity, fetal deaths, recurrent pregnancy loss, central nervous system injury and is characterized by relatively high risk of recurrence (25-50 %). Prospective and well-designed studies are necessary to determine the real prevalence of these adverse pregnancy events associated with VUE. Data about the management of VUE are extremely scarce and thus no recommendation based on the literature review could be actually done.Before the advent of forensic DNA profiling, forensic techniques such as fingerprint examination and blood type comparison were used in the identification of suspects. DNA profiling has since become the gold standard of forensic science, and forensic DNA analysis techniques continue to evolve. Recent developments such as familial searching and phenotyping have raised ethical questions and concerns reflecting those expressed in the late 1980s when forensic DNA analysis was first introduced. At that time, attempts to use DNA evidence in criminal trials were met with challenges to its evidential value and admissibility. A common concern was whether the probative value of the evidence would outweigh its potentially prejudicial effect. This gave rise to a complex three-way debate, which revolved around first, the admissibility of the scientific principles in criminal courts; second, the scientific process involved in analysing DNA samples; and third, the impact that forensic DNA analysis may have on fundamental human rights. Ultimately, debates about the scientific process and the admissibility of such evidence in criminal trials overshadowed the debate about potential infringements of fundamental human rights. This resulted in a lack of critical discussion around the erosion of civil liberties through the use of scientific technologies. This paper revisits the early debates on the development of forensic DNA analysis. It draws parallels with current developments and analyses the potential for current and future human rights infringements, highlighting that the libertarian model offers a necessary counterbalance to the other arguments, due to its concern for maintaining fundamental rights.