11/09/2024


The dynamics of a molecule in a magnetic field is significantly different from its zero-field counterpart. One important difference in the presence of a field is the Lorentz force acting on the nuclei, which can be decomposed as the sum of the bare nuclear Lorentz force and a screening force due to the electrons. This screening force is calculated from the Berry curvature and can change the dynamics qualitatively. It is therefore important to include the contributions from the Berry curvature in molecular dynamics simulations in a magnetic field. In this work, we present a scheme for calculating the Berry curvature numerically using a finite-difference technique, addressing challenges related to the arbitrary global phase of the wave function. The Berry curvature is calculated as a function of bond distance for H2 at the restricted and unrestricted Hartree-Fock levels of theory and for CH+ as a function of the magnetic field strength at the restricted Hartree-Fock level of theory. https://www.selleckchem.com/products/gsk3787.html The calculations are carried out using basis sets of contracted Gaussian functions equipped with London phase factors (London orbitals) to ensure gauge-origin invariance. In this paper, we also interpret the Berry curvature in terms of atomic charges and discuss its convergence in basis sets with and without London phase factors. The calculation of the Berry curvature allows for its inclusion in ab initio molecular dynamics simulations in a magnetic field.Temperature-dependent dynamic structure factors S(Q, ω) for liquid water have been calculated using a composite model, which is based on the decoupling approximation of the mean square displacement of the water molecules into diffusion and solid-like vibrational parts. The solid-like vibrational part Svib(Q, ω) is calculated with the phonon expansion method established in the framework of the incoherent Gaussian approximation. The diffusion part Sdiff(Q, ω) relies on the Egelstaff-Schofield translational diffusion model corrected for jump diffusions and rotational diffusions with the Singwi-Sjölander random model and Sears expansion, respectively. Systematics of the model parameters as a function of temperature were deduced from quasi-elastic neutron scattering data analysis reported in the literature and from molecular dynamics (MD) simulations relying on the TIP4P/2005f model. The resulting S(Q, ω) values are confronted by means of Monte Carlo simulations to inelastic neutron scattering data measured with IN4, IN5, and IN6 time-of-flight spectrometers of the Institut Laue-Langevin (ILL) (Grenoble, France). A modest range of temperatures (283-494 K) has been investigated with neutron wavelengths corresponding to incident neutron energies ranging from 0.57 to 67.6 meV. The neutron-weighted multiphonon spectra deduced from the ILL data indicate a slight overestimation by the MD simulations of the frequency shift and broadening of the librational band. The descriptive power of the composite model was suited for improving the comparison to experiments via Bayesian updating of prior model parameters inferred from MD simulations. The reported posterior temperature-dependent densities of state of hydrogen in H2O would represent valuable insights for studying the collective coupling interactions in the water molecule between the inter- and intramolecular degrees of freedom.Previously, we scrutinized the dielectric spectra of a binary glass former made by a low-molecular high-Tg component 2-(m-tertbutylphenyl)-2'-tertbutyl-9,9'-spirobi[9H]fluorene (m-TPTS; Tg = 350 K) and low-Tg tripropyl phosphate (TPP; Tg = 134 K) [Körber et al., Phys. Chem. Chem. Phys. 23, 7200 (2021)]. Here, we analyze nuclear magnetic resonance (NMR) spectra and stimulated echo decays of deuterated m-TPTS-d4 (2H) and TPP (31P) and attempt to understand the dielectric spectra in terms of component specific dynamics. The high-Tg component (α1) shows relaxation similar to that of neat systems, yet with some broadening upon mixing. This correlates with high-frequency broadening of the dielectric spectra. The low-Tg component (α2) exhibits highly stretched relaxations and strong dynamic heterogeneities indicated by "two-phase" spectra, reflecting varying fractions of fast and slow liquid-like reorienting molecules. Missing for the high-Tg component, such two-phase spectra are identified down to wTPP = 0.04, indicating that isotropic reorientation prevails in the rigid high-Tg matrix stretching from close to Tg TPP to Tg1 wTPP. This correlates with low-frequency broadening of the dielectric spectra. Two Tg values are defined Tg1 (wTPP) displays a plasticizer effect, whereas Tg2 (wTPP) passes through a maximum, signaling extreme separation of the component dynamics at low wTPP. We suggest understanding the latter counter-intuitive feature by referring to a crossover from "single glass" to "double glass" scenario revealed by recent MD simulations. Analyses reveal that a second population of TPP molecules exists, which is associated with the dynamics of the high-Tg component. However, the fractions are lower than suggested by the dielectric spectra. We discuss this discrepancy considering the role of collective dynamics probed by dielectric but not by NMR spectroscopy.Two-dimensional electronic-vibrational spectroscopy (2DEVS) is an emerging spectroscopic technique which exploits two different frequency ranges for the excitation (visible) and detection (infrared) axes of a 2D spectrum. In contrast to degenerate 2D techniques, such as 2D electronic or 2D infrared spectroscopy, the spectral features of a 2DEV spectrum report cross correlations between fluctuating electronic and vibrational energy gaps rather than autocorrelations as in the degenerate spectroscopies. The center line slope of the spectral features reports on this cross correlation function directly and can reveal specific electronic-vibrational couplings and rapid changes in the electronic structure, for example. The involvement of the two types of transition moments, visible and infrared, makes 2DEVS very sensitive to electronic and vibronic mixing. 2DEV spectra also feature improved spectral resolution, making the method valuable for unraveling the highly congested spectra of molecular complexes. The unique features of 2DEVS are illustrated in this paper with specific examples and their origin described at an intuitive level with references to formal derivations provided.