11/05/2024


In this report, we present the genome sequences of two Serratia marcescens strains isolated as contaminants from platelet concentrates by Canadian Blood Services and designated CBS2010/11 (CBS11) and CBS2010/12 (CBS12). Genomic sequence analyses showed that CBS11 has one chromosome and one plasmid (pAM01), whereas CBS12 has no plasmids.We report the genome sequences of six Xanthomonas hortorum species-level clade members, X. hortorum pathovars taraxaci, pelargonii, cynarae, and gardneri (complete genome sequences) and X. hortorum pathovars carotae and vitians (high-quality draft genome sequences). Both short- and long-read sequencing technologies were used.DNA from 250 million-year-old pink and gray salts from mines in Tarija, Bolivia, subjected to 16S rRNA gene amplicon sequencing and analysis provided evidence for similar but distinct prokaryotic communities. The results constitute a snapshot of archaeal and bacterial microorganisms in these remote and ancient salt deposits.We report on the whole-genome sequence of Paenibacillus sp. strain E222, a bacterium isolated from a fresh culture of Epichloë festucae var. lolii, a mutualistic fungal endophyte of perennial ryegrass. The genome has a size of 7.8 Mb and a G+C content of 46% and encodes 6,796 putative protein-coding genes.Early childhood exposure to a farming environment has been found to be protective against asthma and other atopic disorders. Here, we report the complete genome sequence of Lactococcus lactis subsp. lactis G121, which was isolated from the kitchen of a farm in Bavaria (Germany) and is recognized for its allergy-protective properties. It could be assembled into one circular chromosome, three circular plasmids, and one linear plasmid.Helicobacter pylori affects up to 50% of people worldwide. Here, we present the draft genome sequences of six H. pylori strains isolated from Moroccan patients with different gastric diseases. Multilocus sequence typing analysis showed that all of the H. pylori isolates belonged to the hspWAfrica group.Here, we report the draft genome sequences of robust (A74/C_24-3) and poor (A74/O_2-2) chicken-colonizing Campylobacter jejuni isolates. Whole-genome sequence analyses of these isolates will be helpful in facilitating further studies to identify genetic factors used in chicken colonization.The path from a fertilised egg to an embryo involves the coordinated formation of cell types, tissues and organs. Developmental modules comprise discrete units specified by self-sufficient genetic programs that can interact with each other during embryogenesis. Here, we have taken advantage of the different span of embryonic development between two distantly related teleosts, zebrafish (Danio rerio) and medaka (Oryzias latipes) (3 and 9 days, respectively), to explore modularity principles. We report that inter-species blastula transplantations result in the ectopic formation of a retina formed by donor cells - a module. We show that the time taken for the retina to develop follows a genetic program an ectopic zebrafish retina in medaka develops with zebrafish dynamics. Heterologous transplantation results in a temporal decoupling between the donor retina and host organism, illustrated by two paradigms that require retina-host interactions lens recruitment and retino-tectal projections. Our results uncover a new experimental system for addressing temporal decoupling along embryonic development, and highlight the presence of largely autonomous but interconnected developmental modules that orchestrate organogenesis.Animal germ cells communicate directly with each other during gametogenesis through intercellular bridges, often called ring canals (RCs), that form as a consequence of incomplete cytokinesis during cell division. Developing germ cells in Drosophila have an additional specialized organelle connecting the cells called the fusome. Ring canals and the fusome are required for fertility in Drosophila females, but little is known about their roles during spermatogenesis. With live imaging, we directly observe the intercellular movement of GFP and a subset of endogenous proteins through RCs during spermatogenesis, from two-cell diploid spermatogonia to clusters of 64 post-meiotic haploid spermatids, demonstrating that RCs are stable and open to intercellular traffic throughout spermatogenesis. Disruption of the fusome, a large cytoplasmic structure that extends through RCs and is important during oogenesis, had no effect on spermatogenesis or male fertility under normal conditions. Our results reveal that male germline RCs allow the sharing of cytoplasmic information that might play a role in quality control surveillance during sperm development.Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene (RFX6) and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation RFX6 c.1129C>T, which revealed loss of the pancreas body and tail. From this foetus, we derived iPSCs and show that differentiation of these cells in vitro proceeds normally until generation of pancreatic endoderm, which is significantly reduced. We additionally generated an RFX6HA reporter allele by gene targeting in wild-type H9 cells to precisely define RFX6 expression and in parallel performed in situ hybridisation for RFX6 in the dorsal pancreatic bud of a Carnegie stage 14 human embryo. Both in vitro and in vivo, we find that RFX6 specifically labels a subset of PDX1-expressing pancreatic endoderm. In summary, RFX6 is essential for efficient differentiation of pancreatic endoderm, and its absence in individuals with MRS specifically impairs formation of endocrine cells of the pancreas head and tail.Periodic patterning is widespread in development and can be modelled by reaction-diffusion (RD) processes. However, minimal two-component RD descriptions are vastly simpler than the multi-molecular events that actually occur and are often hard to relate to real interactions measured experimentally. Addressing these issues, we investigated the periodic striped patterning of the rugae (transverse ridges) in the mammalian oral palate, focusing on multiple previously implicated pathways FGF, Hh, Wnt and BMP. https://www.selleckchem.com/products/daurisoline.html For each, we experimentally identified spatial patterns of activity and distinct responses of the system to inhibition. Through numerical and analytical approaches, we were able to constrain substantially the number of network structures consistent with the data. Determination of the dynamics of pattern appearance further revealed its initiation by 'activators' FGF and Wnt, and 'inhibitor' Hh, whereas BMP and mesenchyme-specific-FGF signalling were incorporated once stripes were formed. This further limited the number of possible networks.