Patients undergoing total hip and knee arthroplasty are at high risk for venous thromboembolism (VTE) with an incidence of approximately 0.6-1.5%. Given the high volume of these operations, with approximately one million performed annually in the U.S., the rate of VTE represents a large absolute number of patients. The rate of VTE after total hip arthroplasty has been stable over the past decade, although there has been a slight reduction in the rate of deep venous thrombosis (DVT), but not pulmonary embolism (PE), after total knee arthroplasty. Over this time, there has been significant research into the optimal choice of pharmacologic VTE prophylaxis for individual patients, with the objective to reduce the rate of VTE while minimizing adverse side effects such as bleeding. Recently, aspirin has emerged as a promising prophylactic agent for patients undergoing arthroplasty due to its similar efficacy and good safety profile compared to other pharmacologic agents. However, there is no evidence to date that clearly demonstrates the superiority of any given prophylactic agent. Therefore, this review discusses (1) the current prevalence and trends in VTE after total hip and knee arthroplasty and (2) provides an update on pharmacologic VTE prophylaxis in regard to aspirin usage.Two-layer functional coatings for polyethylene (PE) and polypropylene (PP) films were developed for the active packaging concept. Prior to coating, the polymer films were activated by O2 and NH3 plasma to increase their surface free energy and to improve the binding capacity and stability of the coatings. The first layer was prepared from a macromolecular chitosan solution, while the second (upper) layer contained chitosan particles with embedded catechin or pomegranate extract. Functionalized films were analyzed physico-chemically to elemental composition using ATR-FTIR spectroscopy and XPS. Further, oxygen permeability and wettability (Contact Angle) were examined. The antimicrobial properties were analyzed by the standard ISO 22196 method, while the antioxidative properties were determined with an ABTS assay. Functionalized films show excellent antioxidative and antimicrobial efficacy. A huge decrease in oxygen permeability was achieved in addition. Moreover, a desorption experiment was also performed, confirming that the migration profile of a compound from the surfaces was in accordance with the required overall migration limit. All these properties indicate the great potential of the developed active films/foils for end-uses in food packaging.
Neuroblastoma (NB) is one of the most common malignant solid tumors to occur in children, characterized by a wide range of genetic and epigenetic aberrations. We studied whether modifications of the latter with a 5-aza-2'-deoxycytidine (decitabine, Dac) DNA methyltransferase inhibitor can provide a therapeutic advantage in NB.
NB cells with or without
amplification were treated with Dac. We used flow cytometry to measure cell apoptosis and death and mitochondrial reactive oxygen species (mtROS), microarray to analyze gene expression profile and bisulfite pyrosequencing to determine the methylation level of the
/RIG-I promoter. Western blot was used to detect markers related to innate immune response and apoptotic signaling, while immunofluorescent imaging was used to determine dsRNA. We generated mtDNA depleted ρ
cells using long-term exposure to low-dose ethidium bromide.
Dac preferentially induced a RIG-I-predominant innate immune response and cell apoptosis in SK-N-AS NB cells, significantly rcts of CDDP and poly(IC) in NB cells.Watermelon (Citrullus lanatus) is a non-seasonal, economically important, cucurbit cultivated throughout the world, with Asia as a continent contributing the most. As part of the effort to diversify watermelon genetic resources in the already cultivated group, this study was devoted to providing baseline data on morphological quality traits and health-beneficial phytonutrients of watermelon germplasm collections, thereby promoting watermelon research and cultivation programs. To this end, we reported morphological traits, citrulline, and arginine levels of watermelon genetic resources obtained from the gene bank of Agrobiodiversity Center, Republic of Korea, and discussed the relationships between each. https://www.selleckchem.com/products/GSK1059615.html Diverse characteristics were observed among many of the traits, but most of the genetic resources (>90%) were either red or pink-fleshed. Korean originated fruits contained intermediate levels of soluble solid content (SSC) while the USA, Russian, Tajikistan, Turkmenistan, Taiwan, and Uruguay originated fruits had generally the highest levels of soluble solids. The citrulline and arginine contents determined using the High Performance Liquid Chromatography (HPLC) method ranged from 6.9 to 52.1 mg/g (average, 27.3 mg/g) and 1.8 to 21.3 mg/g (average, 9.8 mg/g), respectively. The citrulline content determined using the Citrulline Assay Kit ranged from 6.5 to 42.8 mg/g (average, 27.0 mg/g). Resources with high citrulline and arginine levels contained low SSC, whereas red- and pink-colored flesh samples had less citrulline compared to yellow and orange.Stripe rust caused by the pathogen Puccinia striiformis f. sp. tritici (Pst) is a major threat for wheat, resulting in low yield and grain quality loss in many countries. Genetic resistance is a prevalent method to combat the disease. Mapping the resistant loci and their association with traits is highly exploited in this era. A panel of 465 Pakistani spring wheat genotypes were evaluated for their phenotypic response to stripe rust at the seedling and adult plant stages. A total of 765 single nucleotide polymorphism (SNP) markers were applied on 465 wheat genotypes to evaluate their stripe rust response against nine races during the seedling test and in three locations for the field test. Currently, twenty SNPs dispersed on twelve chromosomal regions (1A, 1B, 1D, 2A, 2B, 4A, 4B, 5B, 6A, 6B, 6D and 7B) have been identified that were associated with rust race-specific resistance at the seedling stage. Thirty SNPs dispersed on eighteen chromosomal regions (1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5A, 5B, 6A, 6B, 6D, 7A, 7B and 7D) are associated with adult plant resistance.