11/26/2024


 putida S12 strains for FDCA production.The stoichiometric Cu2O2(CO)n+ (n = 3-7) clusters are generated via a laser vaporization supersonic cluster source in gas phase and identified by infrared photodissociation spectroscopy in the C-O stretching region. The infrared spectra are interpreted and the cluster structures are determined by density functional calculations. The ground state of Cu2O2(CO)n+ are intrinsically a dicopper superoxide carbonyl with [(OC)xCuOOCu(CO)y]+ ( x + y = n) structures in which CO ligands coordinate a zigzag Cu(OO)Cu+ core. The structure characterization for Cu(OO)Cu+ core-based clusters is crucial to correctively understand the associated catalytic reactions by metal clusters.A one-pot synthesis of 1,3-diyne-tethered trifluoromethylcyclopropanes starting from 2-CF3-3,5-diyne-1-enes and sulfur ylides via a sulfur ylide mediated cyclopropanation and a DBU-mediated epimerization sequence is described in this work. This process is highly diastereoselective with broad substrate scope. Moreover, a series of synthetic transformations based on the diyne moieties were conducted smoothly, affording cyclopropanes featuring trifluoromethyl-substituted all-carbon quaternary centers.The combination of the many-body Green's function GW approximation and the Bethe-Salpeter equation (BSE) formalism has shown to be a promising alternative to time-dependent density functional theory (TD-DFT) for computing vertical transition energies and oscillator strengths in molecular systems. The BSE formalism can also be employed to compute ground-state correlation energies thanks to the adiabatic-connection fluctuation-dissipation theorem (ACFDT). Here, we study the topology of the ground-state potential energy surfaces (PESs) of several diatomic molecules near their equilibrium bond length. https://www.selleckchem.com/products/Mubritinib-TAK-165.html Using comparisons with state-of-art computational approaches (CC3), we show that ACFDT@BSE is surprisingly accurate and can even compete with lower-order coupled cluster methods (CC2 and CCSD) in terms of total energies and equilibrium bond distances for the considered systems. However, we sometimes observe unphysical irregularities on the ground-state PES in relation with difficulties in the identification of a few GW quasiparticle energies.Quantification of the rate of direct repeat deletion (DRD) is an important aspect in the research of DNA rearrangement. The widely used tetracycline selection method usually introduces antibiotic pressure to the tested organism, which may interfere with the DRD process. Also the length of repeat arm (LRA) is limited by the length of the TetR coding sequence. On the basis of the fluorescent microscopy and high-throughput imaging processing, here we developed a two-module genetic circuit, termed TFDEC (which stands for three-color fluorescence-based deletion event counter), to quantify the DRD rate under neutral conditions. DRD events were determined from the state of a three-state fluorescent logic gate constructed through coupling of an OR gate and an AND gate. TFDEC was applied in Pseudomonas aeruginosa, and we found that the DRD rate was RecA-dependent for long repeat arms (>500 bp) and RecA-independent for short repeat arms ( less then 500 bp), which was consistent with the case in Escherichia coli. In addition, the increase of DRD rate followed an S-shaped curve with the increase of LRA, while treating cells with ciprofloxacin did not change the LRA-dependence of DRD. We also detected a significant increased DRD rate for long repeat arms in the uvrD (8-fold) and radA (4-fold) mutants. Our results show that the TFDEC method could be used as a complement tool for quantification of the DRD rate in the future.Untargeted molecular analyses of complex mixtures are relevant for many fields of research, including geochemistry, pharmacology, and medicine. Ultrahigh-resolution mass spectrometry is one of the most powerful tools in this context. The availability of open scripts and online tools for specific data processing steps such as noise removal or molecular formula assignment is growing, but an integrative tool where all crucial steps are reproducibly evaluated and documented is lacking. We developed a novel, server-based tool (ICBM-OCEAN, "Institute for Chemistry and Biology of the Marine Environment, Oldenburg - complex molecular mixtures, evaluation and analysis") that integrates published and novel approaches for standardized processing of ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Different from published approaches, we offer diagnostic and validation tools for all relevant steps. Among other features, we included objective and reproducible reduction of noise and systematic errors, spectra recalibration and alignment, and identification of likeliest molecular formulae. With 15 chemical elements, the tool offers high flexibility in formula attribution. Alignment of mass spectra among different samples prior to molecular formula assignment improves mass error and facilitates molecular formula confirmation with help of isotopologues. The online tool and the detailed instruction manual can be freely accessed at www.icbm.de/icbm-ocean.Artificial color pixels based on dielectric Mie resonators are appealing for scientific research as well as practical design. Vivid colors are imperative for displays and imaging. Dielectric metasurface-based artificial pixels are promising candidates for developing flat, flexible, and/or wearable displays. Considering the application feasibility of artificial color pixels, wide color gamuts are crucial for contemporary display technology. To achieve a wide color gamut, ensuring the purity and efficiency of nanostructure resonance peaks in the visible spectrum is necessary for structural color design. Low-loss dielectric materials are suitable for achieving vivid colors with structural color pixels. However, high-order Mie resonances prevent color pixels based on dielectric metasurfaces from efficiently generating highly saturated colors. In particular, fundamental Mie resonances (electric/magnetic dipole) for red can result in not only a strong resonance peak at 650 nm but also high-order Mie resonances at shorter wavelengths, which reduces the saturation of the target color.