Orthorhombic RMnO3 (R = rare-earth cation) compounds are type-II multiferroics induced by inversion-symmetry-breaking of spin order. They hold promise for magneto-electric devices. However, no spontaneous room-temperature ferroic property has been observed to date in orthorhombic RMnO3. Here, using 3D straining in nanocomposite films of (SmMnO3)0.5((Bi,Sm)2O3)0.5, we demonstrate room temperature ferroelectricity and ferromagnetism with TC,FM ~ 90 K, matching exactly with theoretical predictions for the induced strain levels. Large in-plane compressive and out-of-plane tensile strains (-3.6% and +4.9%, respectively) were induced by the stiff (Bi,Sm)2O3 nanopillars embedded. The room temperature electric polarization is comparable to other spin-driven ferroelectric RMnO3 films. Also, while bulk SmMnO3 is antiferromagnetic, ferromagnetism was induced in the composite films. The Mn-O bond angles and lengths determined from density functional theory explain the origin of the ferroelectricity, i.e. modification of the exchange coupling. Our structural tuning method gives a route to designing multiferroics.BACKGROUND Benign esophageal tumors are considered rare, and most commonly are leiomyomas with the incidence of 0.005%. They arise intramurally in the distal two-thirds of the esophagus and are multiple in about 5% of patients. Leiomyoma lesions can mimic esophageal cancer making the diagnosis more challenging. Many cases are asymptomatic, up to 15%-50%, and most cases are discovered incidentally during esophagogastroduodenoscopy (EGD) and other procedures. The treatment of choice for symptomatic leiomyomas to relieve the compression is surgical enucleation with either an open thoracotomy, submucosal tunneling endoscopic resection, a video-assisted thoracoscopic approach (VATS), or with robotic techniques. CASE REPORT Here we report a case of a 53-year-old Saudi female patient who presented with dysphagia which had been ongoing for a long time. There were no other associated symptoms such as dyspepsia, nausea, or vomiting. She was diagnosed with a calcified leiomyoma of the esophagus based on a computed tomography (CT) scan and an endoscopic ultrasound (EUS) finding. After thorough investigations and workups, the management plan was taken at King Faisal Specialist Hospital and Research Centre by preforming a right video-assisted thoracoscopic enucleation. CONCLUSIONS The aim of this case report was to add to the literature by reporting the satisfactory outcomes of right video-assisted enucleation contrary to other surgical approaches that have been discussed in the literature.The purpose of this study was to evaluate the effect of placing small lead shields on the temple region of the skull to reduce radiation dose to the lens of the eye during interventional fluoroscopically-guided procedures and cone-beam computed tomography (CBCT) scans of the head. EGSnrc Monte-Carlo code was used to determine the eye lens dose reduction when using lateral lead shields for single x-ray projections, CBCT scans with different protocols, and interventional neuroradiology procedures with the Zubal computational head phantom. A clinical C-Arm system was used to take radiographic projections and CBCT scans of anthropomorphic head phantoms without and with lead patches, and the images were compared to assess the effect of the shields. For single lateral projections, a 0.1 (0.3)-mm-thick lead patch reduced the dose to the left-eye lens by 40% to 60% (55% to 80%) from 45° to 90° RAO and to the right-eye lens by around 30% (55%) from 70° to 90° RAO. For different CBCT protocols, the reduction of lens dose with a 0.3-mm-thick lead patch ranged from 20% to 53% at 110 kVp. For CBCT scans of the anthropomorphic phantom, the lead patch introduced streak artifacts that were mainly in the orbital regions but were insignificant in the brain region where most neurointerventional activity occurs. The dose to the patient's eye lens can be reduced considerably by placing small lead shields over the temple region of the head without substantially compromising image quality in neuro-imaging procedures.The NATO HFM 291 research task group (RTG) on "Ionizing Radiation Bioeffects and Countermeasures" represents a group of scientists from military and civilian academic and scientific institutions primarily working in the field of radiobiology. Among other tasks, the RTG intends to extend their work on risk estimation and communication to bridge the gap in appropriate judgment of health risks given a certain radiation exposure. The group has no explicit psychological background but an expertise in radiobiology and risk assessment. The group believes that, as one of the essential first steps in risk communication, it is required to put radiation risk into perspective. Radiation risk requires a weight in comparison to already-known risks. What we envision is to Compare Radiation exposure-associated health Risks (CRRis App) with daily life health risks caused by other common exposures such as cigarette smoking, driving a car, etc. Within this paper, we provide (1) an overview of health risks after radiation exposure, (2) an explanation of the task and concept of an envisioned CRRis App, (3) an overview of existing software tools related to this issue, (4) a summary of inputs and discussions with experts in the field of radiation protection and risk communication during the ConRad conference, and finally, (5) identification of the next steps in the development of the App.Latest advantages in computed tomography (CT) come with enhanced diagnostic imaging and also sophisticated dose reduction techniques. However, overall exposure to ionizing radiation of patients in Germany rises slightly, which is mainly based on the growing number of performed CT scans. Furthermore, new possibilities in modern imaging, including 4D scans or perfusion protocols, offer new medical insights but require additional scans.In this study, we reevaluated data sets from patients undergoing CT examinations because of suspected pulmonary embolism and compared doses and diagnostic results of the standard protocol to the additional modern CT subtraction technique. Two groups of single-blinded radiologists were provided with CT data sets from 50 patients. https://www.selleckchem.com/products/pirfenidone.html One group (G1) had access to full datasets including CT subtraction with perfusion map. The other group (G2) only evaluated conventional CT angiography. Results were compared to final clinical diagnosis. Dose length product (DLP) of CT angiography was compared to CT subtraction technique, which consists of an additional non-contrast-enhanced scan and perfusion map.