The toxicity characteristics of HBCD and resistance mechanism of flavonols are investigated based on physiological and metagenomic analysis. Toxicology research of HBCD on Arabidopsis thaliana (Col and fls1-3) not only shows the toxic effect of HBCD on plants, but also indicates that flavonols could improve plant resistance to HBCD, including root length, shoot biomass and chlorophyll content. Analysis of eggNOG and GO enrichment demonstrates that HBCD has toxic effect on both gene expression and protein function, which concentrates on energy production - conversion and amino acid transport - metabolism. Differential expressed genes in flavonols-treated groups indicates that flavonols regulate the metabolism of amino acids, cofactors and vitamins, which is involved in plant defense system against oxidative damage caused by HBCD stress. HBCD is believed to affect the synthesis of proteins via genes expression of ribosome biogenesis process. Flavonols could strengthen the plant resistance and alleviate toxic effect under HBCD stress.The widespread use of chemical pesticides for crop protection, despite having contributed to ensure food security, have shown to exert negative impacts on the environment and on human health. In addition, the frequent emergence of resistance to pesticides and their adverse effects toward non-target organisms have generated the need to develop novel ecofriendly tools for pest control. Among these, plant essential oils (EOs) may play a central role in arthropod pest control. Recently, two formulations (Emulsion and PEG-nanoparticles) of three citrus EOs (lemon, mandarin and sweet orange) showed a promising potential against Tuta absoluta (Meyrick) (Lepidoptera Gelechiidae), a key tomato pest. Here, we evaluated the side effects of these experimental insecticides active substances toward (i) the generalist predator of several tomato pests, Nesidiocoris tenuis Reuter (Hemiptera Miridae); (ii) the soil enzymatic activities (dehydrogenase activity, alkaline phosphomonoesterase, acid phosphomonoesterase and urease) and (iii) the tomato plant antioxidant enzymes (ascorbate peroxidase, catalase, superoxide dismutase and polyphenol oxidase). Among the tested formulations, mandarin EO-based insecticide presented a significant impact on the predator survival and reproduction. Conversely, all the tested compounds proved to be harmless for the soil enzymatic and the plant antioxidant activities. Overall, these results provide solid bases for the development of novel biopesticides for sustainable tomato crop protection.In order to solve the problems of poor adsorption capacity and low stability in treating heavy metal wastewater with traditional constructed wetland (CW) fillers, a new type of filler, artificial zeolite spheres loaded with nano Fe-Al bimetallic oxide (hereinafter referred to as composite zeolite spheres), was prepared for Cr(VI) removal from wastewater. The results indicated that nano Fe-Al bimetallic oxide was an effective material for Cr(VI) removal with the maximal removal efficiency of 84.9% at initial Cr(VI) concentration of 20 mg/L (pH = 3). The micro-reactor experiment further verified that composite zeolite spheres had better removal performance on Cr(VI) than traditional filler. Fourier-transform infrared (FT-IR), X-ray diffractometry (XRD) and X-Ray photoemission spectroscopy (XPS) results demonstrated that -OH groups reduced Cr(VI) to Cr(III), and then the Cr(III) was removed by forming CrxFe1-x(OH)3 precipitation with Fe(III) or formed Cr(OH)3 precipitation with Al-OH through the ion exchange. This study provided an effective approach for treating Cr(VI) wastewater by using a new composite zeolite in constructed wetlands (CWs).The role of endogenous hydrogen sulphide (H2S) in silicon-induced improvement in boron toxicity (BT) tolerance in pepper plants was studied. Two-week old seedlings were subjected to control (0.05 mM B) or 2.0 mM BT in a nutrient solution. These two treatments were combined with 2.0 mM Si. BT caused considerable reduction in biomass, chlorophyll a &b, photosystem II maximum quantum efficiency (Fv/Fm), glutathione and ascorbate in the pepper seedlings. However, it enhanced malondialdehyde (MDA) and hydrogen peroxide, electrolyte leakage, proline, H2S, and activities of catalase, superoxide dismutase, peroxidase, and L-DES. Silicon stimulated growth, proline content and activities of various antioxidant biomolecules and enzymes, leaf Ca2+, K+ and N, endogenous H2S and L-DES activity, but reduced H2O2 and MDA contents, membrane leakage and leaf B. https://www.selleckchem.com/products/bindarit.html Silicon-induced B tolerance was further enhanced by 0.2 mM NaHS, a H2S donor. A scavenger of H2S, hypotaurine (0.1 mM HT), was supplied together with Si and Si + NaHS to assess the involvement of H2S in Si-induced BT tolerance of pepper plants. Hypotaurine inverted the positive role of Si on the antioxidant defence system by reducing endogenous H2S, but NaHS supply along with Si + HT reversed the negative effects of HT, showing that H2S participated in Si-induced BT tolerance of pepper plants.The recent increase in municipal sludge worldwide has led to a great deal of interest in developing an efficient and environmentally friendly sludge treatment method. In the paper, the treatment of municipal sludge by hydrothermal oxidation (HTO) process with H2O2 as the oxidant was proposed. The impacts of HTO temperature and H2O2 mass fraction on the distribution of products, the moisture content, the migration behaviors of the heavy metals (HMs) of the resulted solid products, the concentration of volatile fatty acids (VFAs) and NH3-N contained in the resulted aqueous phase products and the pH value were investigated. The results indicated that the sludge reduction was achieved by HTO treatment, the increasing H2O2 mass fraction and HTO temperature can significantly improve the dewatering performance of the sludge. The potential toxicity fraction of Pb and Cd contained in the resulted solid residual increased with the increasing HTO severity and the potential toxicity fraction of solid residues was still lower than that of raw material. Acetic acid was the main VFAs produced from HTO treated sludge, and its concentration reached to the maximum value of 2923.41 mg/L at 230 °C under H2O2 mass fraction of 15%. The change in the pH of the resulted aqueous phase products was caused by the competition between the acidic (VFAs or CO2) or alkaline (NH3-N) substances derived from the sludge during HTO process. The HTO process was expected to be an efficient method for municipal sludge treatment due to its mild conditions and high heavy metal safety.