11/11/2024


In this review, we provide support to previous findings about the host response to Schistosoma infection reusing public transcriptome data. Importantly, we discuss the role of monocytes and macrophages with emphasis on the mechanisms of alternative macrophage activation during schistosomiasis.Pasteurella multocida is an important pathogenic bacterium of domestic animals. However, the mechanisms of infection are still poorly understood. Here, we found that Pm0442 was dramatically up-regulated in infected mice among 67 predicted lipoproteins of P. multocida serotype A CQ2 strain (PmCQ2). To explore the role of Pm0442 in virulence and the potential of the mutant as a vaccine, Pm0442 mutant of PmCQ2 was successfully constructed. Then, the virulence characteristics, immune/inflammatory responses, and the survival rates of challenged mice were determined. As a result, it was found that the Pm0442 deletion of PmCQ2 significantly decreased bacterial loads and inflammatory responses of lung tissue in mice, resulting in improved survival. Mechanically, Pm0442 affects PmCQ2 capsular and lipopolysaccharide (LPS) synthesis and iron utilization-related genes expression affecting adhesion and phagocytosis. Furthermore, PM0442 bound directly to Toll-like receptor 2 (TLR2) to mediate the secretion of pro-inflammatory cytokine (IL-1β, TNF-α, IL-6, and IL-12p40) in macrophages via activation of the NF-κB, ERK1/2 and p38 signaling pathways. Notably, PmCQ2Δ0442 could provide 70-80% protection to mice challenged with 3.08 × 107 CFU of PmCQ2. Our findings demonstrate that Pm0442 is a virulence-related gene of PmCQ2, which provides new guidance for the prevention and control of Pasteurellosis.The extracellular domain of influenza M2 protein (M2e) is highly conserved and is a promising target for development of universal influenza vaccines. Here, we synthesized a peptide vaccine consisting of M2e epitope linked to a fibrillizing peptide, which could self-assemble into nanoparticle in physiological salt solutions. When administrated into mice without additional adjuvant, the influenza A M2e epitope-bearing nanoparticles induced antibodies against M2e of different influenza subtypes. Comparing with other M2e-based vaccine, these M2e nanoparticles did not induce immune response against the fibrillizing peptide, demonstrating minimal immunogenicity of vaccine carrier. Furthermore, vaccination with M2e-based nanoparticles did not only protect mice against homologous challenge of influenza PR8 H1N1 virus, but also provide protection against heterologous challenge of highly pathogenic avian influenza H7N9 virus. These results indicated that M2e-based self-assembled nanoparticle vaccine is safe and can elicit cross-protection, therefore is a promising candidate of universal influenza vaccines.The emergence of tet(X) and carbapenemase genes in Enterobacterales pose significant challenges to the treatment of infectious diseases. Convergence of these two categories of genes in an individual pathogen would deteriorate the antimicrobial resistance (AMR) crisis furthermore. Here, tigecycline-resistant Enterobacterales strains were isolated and detected with carbapenemase genes, characterized by antimicrobial susceptibility testing, PCR, conjugation assay, whole genome sequencing, and bioinformatics analysis. Three tigecycline-resistant isolates consisting of one plasmid-mediated tet(X4)-bearing Escherichia fergusonii and two chromosomal tet(X6)-bearing Proteus cibarius were recovered from chicken feces. The tet(X4) was located on a conjugative IncX1 plasmid pHNCF11W-tetX4 encoding the identical structure as reported tet(X4)-bearing IncX1 plasmids in Escherichia coli. Among two P. cibarius strains, tet(X6) was located on two similar chromosomal MDR regions with genetic contexts IS26-aac(3)-IVa-aph(4)-Ia-ISEc59-tnpA-tet(X6)-orf-orf-ISCR2-virD2-floR-ISCR2-glmM-sul2 and IS26-aac(3)-IVa-aph(4)-Ia-ISEc59-tnpA-tet(X6)-orf-orf-ISCR2-glmM-sul2. Apart from tet(X6), P. cibarius HNCF44W harbored a novel transposon Tn6450b positive for blaNDM-1 on a conjugative plasmid. This study probed the genomic basis of three tet(X)-bearing, tigecycline-resistant strains, one of which coharbored blaNDM-1 and tet(X6), and identified P. cibarius as the important reservoir of tet(X6) variants. Emergence of P. cibarius encoding both blaNDM-1 and tet(X6) reveals a potential public health risk.Cryptococcus neoformans, a spore-producing pathogenic yeast, affects immunocompromised individuals causing meningoencephalitis. Once C. neoformans is introduced via the respiratory tract, it is engulfed by macrophages and other phagocytes. One of C. neoformans's primary virulence factors is the pigment melanin, which is formed in the cell wall and protects the yeast against UV radiation and oxidizing agents produced by macrophages during phagocytosis. To better understand the observed sex bias (31; malefemale) in C. neoformans infections, the phenotype of various virulence factors was determined in the presence of exogenous sex hormones. C. neoformans melanized faster in the presence of testosterone than it did in the presence of estradiol. Using a combination of RNA sequencing analysis and ELISA results, we identified a growth hormone, gibberellic acid (GA), produced in C. neoformans that was highly upregulated in the presence of testosterone. A variety of knockout strains of genes involved in the GA biosynthesis pathway showed significantly reduced melanization in the presence of testosterone. Additionally, inhibitors of GA also reduced melanization in the presence of testosterone. Thus, these data suggest that the gibberellic biosynthesis pathway is involved in melanization in C. neoformans, and the melanization difference observed in the presence of testosterone may be due to increased production of GA, which may partly explain the sex bias observed in C. neoformans infections.Antimicrobial resistance is an ancient bacterial defense mechanism that has rapidly spread due to the frequent use of antibiotics for disease treatment and livestock growth promotion. We are becoming increasingly aware that pathogens, such as members of the genus Acinetobacter, are precipitously evolving drug resistances through multiple mechanisms, including the acquisition of antibiotic resistance genes. In this study, we isolated three multidrug resistant Acinetobacter species from birds on a free-range farm. Acinetobacter radioresistens, Acinetobacter lwoffii, and Acinetobacter johnsonii were isolated from hens, turkeys and ducks and were resistant to 14 clinically relevant antibiotics, including several listed by the World Health Organization as essential medicines. Co-culturing any of the three Acinetobacter species with Acinetobacter baumannii resulted in contact-dependent release of intact resistance determinants. https://www.selleckchem.com/products/Temsirolimus.html We also isolated several lytic bacteriophages and selected two of these phages to be included in this study based on differences in plaquing characteristics, nucleic acid content and viral morphology.