In the span of five years, my father, brother and mother died. I was close in both emotional and physical proximity to all three. In this role, I witnessed their struggle for dignity at the end of life in whatever manner was left to them. This was made more difficult as they shuffled through the hospital-nursing home-rehabilitation center-home health continuum of care. The patient enters one of those entry points, then seems to ricochet between them. This is an account of how illness and pain erased the life force from my loved ones while I watched helplessly from the sidelines. The emotional toll of seeing their decline was hard to calculate but what of the cost to the one who is dying? And yet each sought to carve some space to imprint their unique spark on their final days even when they had lost the ability to communicate coherently.Singlet fission in tetracene generates two triplet excitons per absorbed photon. If these triplet excitons can be effectively transferred into silicon (Si), then additional photocurrent can be generated from photons above the bandgap of Si. This could alleviate the thermalization loss and increase the efficiency of conventional Si solar cells. Here, we show that a change in the polymorphism of tetracene deposited on Si due to air exposure facilitates triplet transfer from tetracene into Si. Magnetic field-dependent photocurrent measurements confirm that triplet excitons contribute to the photocurrent. The decay of tetracene delayed photoluminescence was used to determine a transfer efficiency of ∼36% into Si. Our study suggests that control over the morphology of tetracene during the deposition will be of great importance to boost the triplet transfer yield further.The arylboronic acid catalyzed dehydrative C-alkylation of 1,3-diketones and 1,3-ketoesters using secondary benzylic alcohols as the electrophile is reported, forming new C-C bonds (19 examples, up to 98% yield) with the release of water as the only byproduct. The process is also applicable to the allylation of benzylic alcohols using allyltrimethylsilane as the nucleophile (12 examples, up to 96% yield).When aliovalent dopants are sufficiently segregated to the core or near the surface of semiconductor nanocrystals, charge carriers donated by the dopants are also segregated to the core or near the surface, respectively. In Sn-doped indium oxide nanocrystals, we find that this contrast in free charge carrier concentration creates a core and shell with differing dielectric properties and results in two distinctly observable plasmonic extinction peaks. The trends in this dual-mode optical response with shell growth differ from core/shell nanoparticles composed of traditional plasmonic metals such as Au and Ag. https://www.selleckchem.com/products/pik-iii.html We developed a model employing a core/shell effective medium approximation that can fit the dual-mode spectra and explain the trends in the extinction response. Lastly, we show that dopant segregation can improve sensitivity of plasmon spectra to changes in refractive index of the surrounding environment.Developing efficient Pt-based electrocatalysts for the methanol oxidation reaction (MOR) is of pivotal importance for large-scale application of direct methanol fuel cells (DMFCs), but Pt suffers from severe deactivation brought by the carbonaceous intermediates such as CO. Here, we demonstrate the formation of a bismuth oxyhydroxide (BiO x (OH) y )-Pt inverse interface via electrochemical reconstruction for enhanced methanol oxidation. By combining density functional theory calculations, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, and electrochemical characterizations, we reveal that the BiO x (OH) y -Pt inverse interface can induce the electron deficiency of neighboring Pt; this would result in weakened CO adsorption and strengthened OH adsorption, thereby facilitating the removal of the poisonous intermediates and ensuring the high activity and good stability of Pt2Bi sample. This work provides a comprehensive understanding of the inverse interface structure and deep insight into the active sites for MOR, offering great opportunities for rational fabrication of efficient electrocatalysts for DMFCs.Oligomers of 5-amino-N-acylanthranilic acid, previously unknown aromatic oligoamides that cannot be obtained with known amide coupling methods, are synthesized based on a new, highly efficient amide-bond formation strategy that takes advantage of the ring-opening of benzoxazinone derivatives. These oligoamides offer multiple backbone NH groups as H-bond donors which, in the presence of iodide or chloride ion, are convergently arranged and H-bonded, which enforces a folded, crescent conformation. These aromatic oligoamides provide a versatile platform based on which anion-dependent foldamers, or anion binders with tunable affinity and specificity, are being constructed.The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme-substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.