3%, and 7.5% in zones 1, 2, and 3, respectively, from the low-flow to the high-flow season. NO3- in the Taizi River was mainly influenced by nitrification in soils, while no significant denitrification was found in the three zones. Measures for reducing NO3- inputs to rivers should be considered by improving effectively utilizing rate of chemical fertilizer and inhibit nitrification.International investment is needed in every economy, and every economy is expected to grow and attract investment. Despite the need of the above in every country, the dilemma is whether it has something to do with the environment. Hence the study into the impact of FDI on environment takes into consideration twenty African countries from 1995 to 2016. The study utilized Pesaran (2015) LM test, Pesaran (2007) CD, and Breusch and Pagan (1980) LM test as well as Pesaran (2007) and Im et al. (2003) panel root unit test, Westerlund (2007) test, Driscoll-Kraay OLS, average mean group (AMG), fully modified least square (FM-OLS), and the quantile regression (QR). The study indicated that foreign direct investment favorably impact ecological sustainability in the long run. The study found bi-directional link between income and CO2 pollution. Clean energy and urbanization were found to have negative impact on the economy, while fossil fuel had positive impact on the economy. Both clean energy and urbanization were found to have bi-directional relationship with CO2 pollution, but fossil fuel has uni-directional relationship with pollution. The study prompted a lot of policy recommendation such as in the interest of reducing ecological harm; these countries' authorities could enforce the laws in the form of protecting ecology policies when dealing with international investment.This paper uses a new integrated method, namely PHDVPSS, which utilizes vacuum pressure (VP) coupled with prefabricated horizontal drain along with solidification/stabilization (SS) for the effective treatment of high-water content dredged contaminated sediment (DCS). https://www.selleckchem.com/ This study sought to evaluate the physico-mechanical and microstructural behaviour of high-water content DCS treated with MgO-GGBS (MG) and Portland cement (PC) as PHDVPSS binders and compared to the traditional Portland cement solidification/stabilization (SS-PC) method. Physico-mechanical and microstructural characteristics of the DCS treated with the PHDVPSS method were evaluated by performing a number of tests such as unconfined compressive strength (UCS), toxicity characteristics of the leaching process (TCLP), pH, X-ray diffraction (XRD) and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS). Treatment results showed that the DCS treated with the MG binder in the PHDVPSS method showed superior performance in terms of a significant reduction in the water content and leachability of zinc (Zn) along with higher mechanical strength and dry density of the samples compared to the traditional SS-PC method. After 56-day curing time, VP-MG cases showed 17.6 % and 50 % higher dry density values, resulting in 2.5 and 17.3 times higher UCS values than VP-PC and SS-PC cases, respectively. In contrast, VP-MG cases showed lower pH values than those of VP-PC and SS-PC cases. Moreover, VP-MG cases exhibited 37.5 % and 44.3 % lower leached Zn concentration during a TCLP test than VP-PC cases and SS-PC cases, respectively. XRD and SEM-EDS tests showed that more voluminous hydration products were produced in the VP-MG cases, which in turn produced a dense stabilized matrix and significantly reduced the leachability of zinc.The submitted work observed Cu, Ni, and Zn effects on selected physiological and stress parameters of the alga Raphidocelis (Pseudokirchneriella) subcapitata. In 96-h experiments, EC50 values for algal specific growth rates (SGR) inhibition in Cu, Ni, and Zn presence were estimated as 0.15, 0.50, and 0.20 mg l-1. In addition to growth inhibition, the effect of metals at various concentrations on algal SGR was also monitored. While these experiments confirmed approximately the same toxicity of Zn and Cu on SGR, Ni toxicity on this parameter was observed as the lowest. In terms of the effect of metals on the level of selected photosynthetic pigments, chlorophyll a, chlorophyll b, and carotenoids, the following inhibition orders can be established Zn > Cu > Ni, Ni > Cu > Zn, and Ni > Cu ≥ Zn, respectively. As a novelty of our research, we included monitoring and evaluation of the intensity of stress, which was the response of algal cells to the presence of Cu, Ni, and Zn, and its correlation with respect to production factors and metal accumulation in algal cells. As stress factors, thiol (-SH) group and TBARS (thiobarbituric acid reactive substances) as significant indicators of lipid level peroxidation were determined. The content of -SH groups depended on the concentration of metal, and its level was the most stimulated by Zn, less by Cu and Ni. The TBARS content was 2 to 5 times higher in Cu than in Zn or Ni presence. In the presence of Zn and Ni, TBARS content reached approximately the same levels. For this parameter, the following rank order can be arranged Cu >> Ni ≥ Zn. While Cu and Ni accumulation in R. subcapitata was confirmed, Zn accumulation was not determined or was below the detectable limit. Regression analyses revealed significant positive correlation between Cu accumulation and TBARS while carotenoids as possible antioxidants confirmed with TBARS mostly negative correlations.In shallow lakes, wind wave turbulence alters underwater spectral composition, but the influence of this phenomenon on phytoplankton community structure is poorly understood. We used 100L mesocosms to investigate the influence of light quality on a natural phytoplankton community collected from Taihu Lake in China. The communities in mesocosms were exposed to sunlight filtered for white, blue, green, and red light, while wave-making pumps simulated wind wave turbulence similar to Taihu Lake. Over the course of experiment, each filtered light reduced the total phytoplankton abundance compared to white light. The mean abundance of phytoplankton in controls was 1.72, 1.78, and 7.89 times of that in the red, blue, and green light treatments. Red, blue, and green light significantly promoted the growth of cyanobacteria, green algae, and diatoms, respectively, and induced successional change of the phytoplankton species under the tested conditions. The proportion of Microcystis to total phytoplankton abundance in controls and red light shifted from 87.