y are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.
One of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.
The recently proposed knockoff filter is a general framework for controlling the false discovery rate when performing variable selection. This powerful new approach generates a "knockoff" of each variable tested for exact false discovery rate control. Imitation variables that mimic the correlation structure found within the original variables serve as negative controls for statistical inference. Current applications of knockoff methods use linear regression models and conduct variable selection only for variables existing in model functions. Here, we extend the use of knockoffs for machine learning with boosted trees, which are successful and widely used in problems where no prior knowledge of model function is required. However, currently available importance scores in tree models are insufficient for variable selection with false discovery rate control.
We propose a novel strategy for conducting variable selection without prior model topology knowledge using the knockoff method with boosted tree models. which is available at https//cran.r-project.org/web/packages/KOBT/index.html.
Supplementary data are available at Bioinformatics online.
Supplementary data are available at Bioinformatics online.
Most smoking quit attempts end in relapse, and interventions focused on relapse prevention are lacking. Helpers Stay Quit (HSQ) is a novel behavioral relapse prevention intervention that teaches newly abstinent smokers to offer a "helping conversation" (HC) to help others quit tobacco.
Pre-post intervention feasibility study with state quitline participants ≥14 days abstinent. Measures at baseline, 3 months, and 6 months included smoking status, offering HCs, and cessation self-efficacy. Primary outcomes self-reported 7-day point prevalence abstinence; offering HCs. Cox models explored association of HCs with relapse. Preliminary effects analysis using propensity score matching compared 30-day abstinence of quitline clients with study sample at 7 months.
Participants (N = 104) were as follows mean age of 53 years (SD 13.9 years), 48.1% male, mean of cigarettes smoked/day of 16.2 (SD 9.7). Compared with participants who remained abstinent (n = 82), relapsers (n = 22) had fewer HCs over 6 months (2.6 vs 7 at quitline 7-month follow-up than other quitline clients.The revision of the sub-order Microchiroptera is one of the most intriguing outcomes in recent mammalian molecular phylogeny. The unexpected sister-taxon relationship between rhinolophoid microbats and megabats, with the exclusion of other microbats, suggests that megabats arose in a relatively short period of time from a microbat-like ancestor. In order to understand the genetic mechanism underlying adaptive evolution in megabats, we determined the whole-genome sequences of two rousette megabats, Leschenault's rousette (Rousettus leschenaultia) and the Egyptian fruit bat (R. aegyptiacus). The sequences were compared with those of 22 other mammals, including nine bats, available in the database. We identified that megabat genomes are distinct in that they have extremely low activity of SINE retrotranspositions, expansion of two chemosensory gene families, including the trace amine receptor (TAAR) and olfactory receptor (OR), and elevation of the dN/dS ratio in genes for immunity and protein catabolism. The adaptive signatures discovered in the genomes of megabats may provide crucial insight into their distinct evolution, including key processes such as virus resistance, loss of echolocation, and frugivorous feeding.
The biogeographic patterns of the East-Asia-endemic shrub Magnolia sieboldii, in which the range of the subsp. sieboldii is interposed with the disjunct distribution of subsp. japonica, implies a complex evolutionary history, involving rapid speciation and hybridization. Here, we aim to reveal the evolutionary and phylogeographic histories of the species with a particular focus on the time of subspecies divergence, the hypothesis of secondary hybridization and the Pleistocene survival of each subspecies, using a combination of genetic analyses and ecological niche modelling.
Genetic variation, genetic structures and phylogenetic relationships were elucidated based on nuclear low-copy genes, chloroplast DNA, and nuclear simple sequence repeats (SSRs). A scenario selection analysis and divergence time estimation were performed using coalescent simulation in DIYABC and *BEAST. Ecological niche modelling and a test of niche differentiation were performed using Maxent and ENMTools.
All marker types showed dee.
We found a deep genetic divergence and a pronounced phylogenetic incongruence among the two subspecies of M. sieboldii, which may have been driven by major paleogeographic and paleoclimatic events that have occurred since the Neogene in East Asia, including global cooling, climate oscillations and the formation of land bridges. Both subspecies were, however, considered to persist in situ in stable climatic conditions during the late Pleistocene.GDF15 has been recently recognized as a tumor-suppressive gene. However, the underlying mechanism by which GDF15 affects breast carcinogenesis is not well understood. https://www.selleckchem.com/products/pco371.html Here, we showed that the inhibitory effect of GDF15 on cell proliferation was dependent on the nuclear localization of the protein. Dynamic translocation of GDF15 into the nucleus altered expression of a number of genes, including KISS-1, and resulted in inhibition of cell growth and invasive behavior. Using KISS-1 promoter-driven luciferase reporter and chromatin immunoprecipitation assays, we demonstrated that, in highly malignant breast cancer cells, GDF15 directly interacts with specific protein-1 (Sp1) at the Sp1-binding sites of the KISS-1 promoter, leading to upregulated KISS-1 expression. Our study indicates that nuclear GDF15 could serve as a transcriptional coactivator to mediate the expression of particular genes to reduce cell proliferation.